Simulation study of ballistic spin-MOSFET devices with ferromagnetic channels based on Heusler and oxide compounds

Patrizio Graziosia and Neophytos Neophytoub

a CNR – ISMN, Istituto per lo Studio dei Materiali Nanostrutturali, v. Gobetti 101, 40129, Bologna, Italy, patrizio.graziosi@gmail.com;
b School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom.

Newly emerged materials from the family of Heuslers and complex oxides exhibit finite bandgaps and ferromagnetic behavior with Curie temperatures much higher than even room temperature. Using the semiclassical top-of-the-barrier FET model, we explore the operation of a spin-MOSFET that utilizes such ferromagnetic semiconductors as channel materials, in addition to ferromagnetic source/drain contacts.

Such a device could retain the spin polarization of injected electrons in the channel, the loss of which limits the operation of traditional spin transistors with non-ferromagnetic channels. Although the investigated compounds are Mn\textsubscript{2}CoAl, CrVZrAl, CoVZrAl, and NiFe\textsubscript{2}O\textsubscript{4}, we expect that the insight we provide is relevant to other classes of such materials as well. \textit{Ref. P. Graziosi and N. Neophytou, J. Appl. Phys. 123, 084503 (2018).}

\textbf{Toshiba’s spin MOSFET}

Sufficient operation only at low T
Possible loss of Spin Polarization in the Si channel

\textbf{Our Proposal spin-MOSFET with ferromagnetic channel}

Ferromagnetic semiconductor channel to retain the Spin Polarization of the injected current

\textbf{The Model}

Ballistic MOSFET with spin dependent contact resistances

\textbf{Generic band structure}

Parameters are chosen to be close to the typical DFT band structures of ferromagnetic semiconducting Heusler (Mn\textsubscript{2}CoAl, CrVZrAl, CoVZrAl,...) m\textsubscript{eff} = m\textsubscript{0} for the early evaluations, then from DFT calculations

\textbf{Confinement effect}

dotted lines: non parabolicity effects

\textbf{Real materials – bandstructures in the insets}

A new spin MOSFET concept has been explored
Actual ferromagnetic Heuslers require thin layer confinement
Promising candidate for spin-MOFETS with RT operation

\textbf{Toshiba’s spin MOSFET}

Sufficient operation only at low T
Possible loss of Spin Polarization in the Si channel

\textbf{Our Proposal spin-MOSFET with ferromagnetic channel}

Ferromagnetic semiconductor channel to retain the Spin Polarization of the injected current

\textbf{The Model}

Ballistic MOSFET with spin dependent contact resistances

\textbf{Generic band structure}

Parameters are chosen to be close to the typical DFT band structures of ferromagnetic semiconducting Heusler (Mn\textsubscript{2}CoAl, CrVZrAl, CoVZrAl,...) m\textsubscript{eff} = m\textsubscript{0} for the early evaluations, then from DFT calculations

\textbf{Confinement effect}

dotted lines: non parabolicity effects

\textbf{Real materials – bandstructures in the insets}

A new spin MOSFET concept has been explored
Actual ferromagnetic Heuslers require thin layer confinement
Promising candidate for spin-MOFETS with RT operation