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ABSTRACT

Bandstructure effects in the electronic transpdrtstoongly quantized silicon
nanowire field-effect-transistors (FET) in variowansport orientations are examined. A
10-band spi®s* semi-empirical atomistic tight-binding model gbed to a self consistent
Poisson solver is used for the dispersion caladatA semi-classical, ballistic FET
model is used to evaluate the current-voltage cit@natics. It is found that the total gate
capacitance is degraded from the oxide capacitaakee by 30% for wires in all the
considered transport orientations ([100], [1101, 1. Different wire directions primarily
influence the carrier velocities, which mainly detene the relative performance
differences, while the total charge difference eawly affected. The velocities depend on
the effective mass and degeneracy of the dispeysitime [110] and secondly the [100]
oriented 3nm thick nanowires examined, indicate iiest ON-current performance
compared to [111] wires. The dispersion featuresstrong functions of quantization.
Effects such as valley splitting can lift the degiacies especially for wires with cross
section sides below 3nm. The effective masses alsange significantly with
guantization, and change differently for differéx@nsport orientations. For the cases of
[100] and [111] wires the masses increase with tiation, however, in the [110] case,
the mass decreases. The mass variations can m@redfrom the non-parabolicities and
anisotropies that reside in the first Brillouin eoof silicon.

Index terms — nanowire, bandstructure, tight binding, transistors, MOSFETS, non-

parabolicity, effective mass, injection velocity, gantum capacitance, anisotropy.



1. Introduction

As transistor sizes shrink down to the nanosca@OS development investigates
alternative structures and devices [1]. Existing@®4field-effect transistors are expected
to evolve from planar, to 3D non-planar deviceh@atometer sizes. A possible device
approach that has attracted large attention rgcbettause of its possibility of enhanced
electrostatic control, is the use of nanowire (NWjnsistors as field effect devices.
Nanowire transistors of diameters even down to Bane already been demonstrated by
various experimental groups [2-4]. Under extrenadisg of the device’s dimensions, the
atoms in the cross section will be countable, aydtal symmetry, bond orientation and
guantum mechanical confinement will matter. Propamistic modeling is therefore
essential in understanding the electrical charmsties of ultra-scaled cross section
nanowire devices. This work identifies the main dstructure parameters that influence
the transport properties of nanowire devices bygisl nearest-neighbor tight binding
(TB) model (spd®s*) [5-8] for electronic structure calculation, gded to a 2D Poisson
solver for electrostatics. To evaluate transpomrabteristics, a simple semi-classical
ballistic model [9, 10] (Fig. 1a) is used. The Isi¢ transport characteristics of square
nanowires of 3nm width, oriented in [100], [110]dafiLl11] transport directions are
examined and compared.

The electrostatic potential variations in the Gatiare calculated using a 2D
Poisson solver. Self-consistently accounting fa plotential variations in the nanowire
cross section is a critical step in evaluating mare transport characteristics. Although
this factor causes only small shifts of the endeygls, and weak lifting of degeneracies,
it strongly influences the charge placement inc¢hess section of the wire. The charge
placement, together with the small 1D density atest in nanowires, strongly degrades
the capacitance of the device by up to 30% ana@&fies performance. This degradation
is the samefor all wire orientations. It is shown that therrgar injection velocities
(controlled by the transport mass) and the degermesgcontrolled by orientation) are the
dominant determining factors of the relative deverformance for different wire
orientations. In terms of ON-current capabilitigansport at small nanowire dimensions

will be preferable in the [110] oriented devicesttihave the lowest mass and highest



carrier velocities, closely followed by the [10@Guices with a little higher masses. [111]
nanowires indicate lower performance due to theilcimheavier transport masses in
agreement with [11]. As also shown by other authtire masses and degeneracies are
strong functions of not only directionality, butsal of structural quantization [12-14].
Specifically, for the case of mass variations, Wigk shows how quantization affects the
masses differently in different transport oriergas. It is a result of the non-parabolicity
and anisotropy of the Si bandstructure that isi@adrly evident in strongly quantized
nanowires. Wires in [110] transport orientation ex@nce a reduction in the electron
transport effective mass compared to [100] or [1driénted wires. A simple analytical
approach presented in this work, provides insighiriderstanding these variations. Other
effects, such as valley splitting, also have dioeal dependence and are significantly
enhanced in [110] nanowires compared to [100] bd [hanowires.

Necessity of atomistic modelinghe effects investigated in this study, are mainly
atomistic effects, which the usual effective magpraximation (EMA) fails to capture.
When comparing devices in different orientatiorieyrastic description of the device has
the advantage of being able to automatically capttue valley projections and extract the
dispersions of the nanowires in the transport ¢aigon. Atomistic modeling also
automatically includes information about band cougplnd mass variations as functions
of quantization. The problem of identifying the @mt bandstructure and effective
masses of nanowires has been addressed by vautusrsain references [15-18] with
gualitative agreement on the main features of thect@nic structures. Other
sophisticated techniques for electronic struct@lewation also mention mass variations
in nanostructures from their bulk values, whichutesin different threshold voltages and
ON-current densities [15, 19]. By adjusting thesefive masses to map masses extracted
from atomistic calculations, however, especially fb00] oriented nanowires, and at
some cases for other orientations, the EMA cahlsgilused [15, 20] for the conduction
band only. In general, however, this method is atways valid, and atomistic
simulations are more appropriate for nanowires ¢éva nanometers of cross sectional
sides.

This paper is organized as followls: section 2, the TB model, its validity and the

simulation approach is described. Section 3, coatthe numerical results. Section 3(a)



examines the behavior of bandstructure under cHaligg of the lattice for nanowires in
different orientations for 3nm cross section squaBowires. Section 3(b) compares the
performance of the nanowires in terms of total gatpacitance, quantum capacitance,
injection velocity and drive current capabilitiesr fnanowires in different orientations.
Explanations for the relative performance are giwenterms of the most important
dispersion properties (masses and degeneraciesjors&(c) examines how structural
guantization will impact the dispersions of wireghadifferent cross sectional areas. The
valley splitting and the mass variation in wiresddferent cross sections are examined.
Finally, in 3(d) an explanation of the dispersioas® and band edge variation is given
using extracted bands from the bulk bandstructBeetion 4 summarizes and concludes

the paper.

2. Approach

Motivation for an empirical TB modeAt the nanometer scale the concept of a
“new device” and a “new material” are blurred. Quen mechanics of the electronic
structure, crystal symmetry, atomic composition apdtial disorder are important. A
certain electronic structure model needs to satssfyeral requirements to accurately
capture nanoscale device physics. The finite extérile devices rather than the infinite
periodic nature speaks for the choice of a localdaet rather than a plane wave basis
set. The stability of the bands in typical semiasetdr devices speaks for a reduced
model that takes the existence of bands for graritee need to model complicated man-
made heterostructures speaks for a nearest neightdel to eliminate ambiguities of
long-range coupling elements. The need to simldaitee extensive structures containing
tenths of millions of atoms [7], requires a reduceder model. The need to accurately
model bandgaps (within a few meV) and masses (walfew %) speaks for an empirical
bandstructure model rather than an ab-initio mo#éiékthese requirements have led to the

choice of empirical TB in this work.



The spd®s* TB model:The basis set of the ¥fs* nearest neighbor TB model
used in this work, is composed of orthogonal Iaeli orbitals. This type of basis makes
it very attractive for accurate electronic struetwf truncated nanostructures of finite
sizes and composition variations on the nm-scals.d very convenient method to treat
material and potential variations as well as stréglds at the nanoscale. The
parameterization was performed using a geneticrithgo in [5], and the parameters
extracted can reproduce the band edges of thedilidkn bandstructure over the entire
Brillouin zone. The model is described in detailreferences [5-8]. The energy bands
obtained for nanowires, as well as in the bulk dasenergy regions away from the bulk
minima, are in good quantitative agreement withepttheoretical calculations using
pseudopotential and ab-initio GW methods [21].His work, the electrostatic potential
for charge self consistency is also included on dhesides of the Hamiltonian in an
effective potential approach which shifts the banddgh no further change in
connectivity.

Validation of the model through experimental dag&ince the accuracy of the
results presented here strongly depends on thelityabf the TB model used, and
especially on its transferability to nanostructyriégss convincing to mention that the
same model and calibration parameters were usegkptain experimental data in a
variety of applications with excellent qualitatiagreement. Some examples include
explaining resonant tunneling diode applications ti@nsport under high bias with
charge self consistency [22-24], explaining expental data for the bandgap of ultra
scaled nanowires [25-27], valley splitting of tdtend disordered quantum wells [28],
and the electronic structure of silicon systemshvpihosphorus impurities [29]. Further
theoretical work presented in reference [30] exawmithe performance of core shell
nanowires and validates against experimental d&pecifically, the theoretical
calculation of experimental measurements of thedlgap of ultra scaled [112] oriented
nanowires in [25-27] is a strong validation tha¢ imodel captures the essential non-
parabolicities in a large part of the Brillouin zoof Si. As it will be shown later on, non-
parabolicites and anisotropies at high energiemngty influence the masses and band
edges of nanowires. Since the bandgap of quanfigsi@ms is a strong function of the

guantization masses in the two transverse dirextiarverification of the experimentally



deduced nanowires’ bandgap, supports the theorgtiediction for the behavior of the

wires’ masses under strong quantization, and iargxhe validity of the model.

The simulation approachfhe model device simulated is a rectangular nargwi

of 3nm x 3nm dimensions in various transport oagohs. Unless otherwise stated, the

specified wire orientation is the transport direnti Three different orientations, ([100],

[110] and [111]) are investigated. The atomic rgeament in each case is different as

shown in Fig. 1b.

The simulation procedure consists of three stepsshasvn in Fig. la and

described below:

1.

First, the bandstructure of the wire is calculatsthg an atomistic tight-binding
model. In this case, each atomic side in the zarade lattice is represented by a
sp’d>s* basis in the wire Hamiltonian. Since only thedoction band is treated
in this paper, the spin-orbit coupling is ignoreékhis approximation favors
computational efficiency, without affecting the acacy of the results [16]. The
atoms that reside on the surface of the nanowiee paissivated in the $p
hybridization scheme [31]. This technique succdlssftmoves all dangling
bonds which otherwise will create surface stateth wigen-energies in the
bandgap of the device. Any effect of surface retrasson or surface
imperfections is not considered in this study. Oty channel atoms enter the
atomistic calculation in the Hamiltonian constraoati At this step, the energy of
the dispersion states and their wavefunctions amapated. Bandstructure
effects such as valley splitting and effective mabsinge under physical
quantization are investigated at this step forrtarowire of interest, using the
equilibrium dispersion (flat electrostatic potehtrathe Hamiltonian).

A semiclassical top-of-the-barrier ballistic modelused to fill the dispersion
states and compute the transport characteristjicd®[9 This model assumes that
the positive going states are filled accordinghe source Fermi level, whereas
the negative going states according to the drairmFdevel. Once the
occupancy of the dispersion states is computedgusieir wavefunction from
step 1, the charge distribution in each of thetaltlsites of the system (and

therefore the spatial distribution of charge) isated.



3. Using the charge distribution obtained in steph& 2D Poisson equation is
solved in the cross section of the wire to obtaia ¢lectrostatic potential. The
Poisson’s equation is solved in 2D and all the adocations are collapsed on
the 2D plane [32]. The Poisson domain is descrlied finite difference mesh
and contains the nanowire core on an atomistic meh dielectric and the
metal. The electrostatic potential is added to diegonal elements of the
atomistic Hamiltonian for recalculating the bandsture until self consistency
Is achieved. In this step, the oxide is in all addtons is assumed to be Si6f
1.1nm thickness. This dielectric is not includedtlie Hamiltonian, but only
treated in the Poisson equation as a continuumumnedhny effects due to the
potential variations along the transport directame ignored. This falls under
the assumption that at the ballistic limit the @&rinjection at the top of the

barrier is of most importance to the transport préps of the device.

Although the transport model used is simplisti@libws for examining how the
bandstructure of the nanowire alone will affect lisllistic transport characteristics,
ignoring any short channel effects or quantum meiclad tunneling under the potential
barrier. The same conclusion to this work can ktaiobd from full 3D quantum (NEGF)
simulations [11], but the simple model used herevigles physical insight. It is also
mentioned that the main conclusions of this work be valid for other nanowire cross
sections, i.e. cylindrical, since the electroniopgmrties of nanowires are a much more

sensitive function of the quantization size rativan the quantization shape [15].

3. Results and Discussion

(a) Effect of potential variations on the NW dispen and charge distribution

Description of the dispersion in [100] oriented @& The dispersion of a [100]
oriented nanowire is shown in Fig. 2c. It has arfimld degenerate valley at thepoint

(k=0) resulting from the k-space projection of tharfeilicon ellipsoids that reside in the



plane of quantization (here tlyez plane). There are two more valleys residing ofbne
in the positive and one in the negatike axis), that result from the two off-plane
ellipsoids. The first four appear lower in energcaiuse of their heavy quantization mass
(my~m=0.89my andm,~m=0.19m) and have lighter transport mass{m=0.19m). The
other two appear at higher energies because of ligiger quantization masses
(m~m=0.19m and m~m=0.19my) and have heavier transport mass~mn=0.89m).
(The wire massesn,, m, m, are close, but not exactly the bulk longitudinaida
transverse masses for reasons that will be adaféstse on).

Change of the [100] wire dispersion due to potdn@riations / charge filling:
The first part of the results section investigabesv potential variations in the cross
section of a wire can change the dispersion and thewvavefunction shape changes as
the lattice fills up with charge. Figure 2 showwide features for a 3nm square [100]
oriented nanowire under low and high gate biasdse @rain bias used =0.5V in all
cases throughout this work). Under low gate biages|attice is almost empty of charge
(Fig. 2a) and the dispersion relation (Fig. 2cjhis equilibrium dispersion. Under high
biases, there is significant charge filling of tlagtice as shown in Fig. 2b. The charge
distribution takes the shape of the underlying atgmositions. In these simulations, even
under high inversion conditions, the wavefunctispushed almost 0.5nm away from the
Si/SIG, interface. The dispersion of this small size nanesy on the other hand, is
usually considered to be a material parameter,usmigr strong confinement a property
of the geometry, but independent of charge filloighe lattice. It is shown, however, in
Fig. 2d, that charge filling of the lattice causbésnges in the dispersion of the nanowire
even at the 3nm wire length scale. Here, the eXxatates at shift down, and reside
now below the off- point valleys. In this case the change in theeatisipn is small, but
since it is associated with the wavefunction shthpegives rise to the charge distribution
in the wire cross section, it can affect the devicapacitance and to some extent its
transport characteristics.

Change of the [110] wire dispersion due to potdmti@riations / charge filling:
The change in the dispersion under potential vianatis also observed in different wire
orientations, which have different dispersion rielas. The position of the bands shifts

and degeneracies can also be lifted. Figure 3aewshheE(k) of a [110] oriented



nanowire under low and high biases. The dispertomks different from the [100]
dispersion, with a two-fold degenerate band ,aand pair of two-fold degenerate bands
off- . A larger variation in the dispersion under chafiieg of the lattice is observed
compared to the [100] wire case. The band degersrace lifted (from 2 to 1) by
severaimeV. This is an effect that cannot be captured imgpk EMA treatment.

Change of the [111] wire dispersion due to potdniaxiations / charge filling:

Figures 3c-d show the same features for a [L1&hted wire. The degeneracy of
the bands of this wire is 3 (for each valley) bessawf the symmetry between the
transport axis (or equivalently the quantizatioang in the perpendicular direction) and
the three pairs of ellipsoids in the Si bandstriectidigh biases increase band coupling,
which slightly lifts the degeneracies. It is notbdt in the case of [100] and [110] wires
the conduction band minima is located at th@oint since the quantizedvalleys project
there. In the [111] case, however, the conductamdbominimum is located at 0.37 of the
Brillouin zone (normalized to 1) as seen in Figd3or reasons explained in [33].

Charge / velocity are invariant to self-consistendyst by looking at these
variations in the dispersion, however, it is n@arlthat these will result in changes in the
transport characteristics. Indeed, Fig. 3e-f compdne density of states and velocities at
the samds-E. (difference of the Fermi level from the conductlmand edge) between the
equilibrium dispersion and the dispersion at vagiduases and little difference is
observed. Quantities for two cases are calculatel:The Fermi level “scans” the
equilibrium bandstructure and the charge and imgactelocities are extracted, and (b)
the results are extracted from the self-consistattulations with potential variations in
the lattice taken into consideration. The chargd emection velocity is plotted as a
function of E;. (E. is shifted to zero for all wires). There is norsfigant difference in
these extracted quantities due to the potentiaatrans, and the self-consistent vs. non-
self-consistent curves fall almost on top of eattten For this example a large drain bias
(Vp=0.5V) is used. Under low drain biasé4€1meV) and low temperatures, however,
where the transport energy window can be compam@béyen smaller than the changes
in the bandstructure, evidence of the bandstrudifferences in these two quantities as

well as other quantities such as the transcondoetare more likely to appear.



Charge distribution is strongly dependent on seligistency: Although the
charge and velocity appear to be only weakly medifdy the self-consistent calculation,
the self consistently extracted bandstructure spords to a different wavefunction
shape which reflects to a different charge distrdsuin space. This is the quantity that
causes degradation of the total gate capacitanaellabe shown later and affects the
transport characteristics, and not the dispersitanges by themselves. One therefore,
has to also consider the change in the wavefunthiahis associated with the dispersion
changes. (In an earlier work, [34], it is showntttiee current-voltage characteristics can
be significantly overestimated if the spatial vaada of the charge is not considered).

Orientation differences in the charg&he fact that the charge in Fig. 3e for any
position of the Fermi level is always the highestthe [111] wire case, is due to the
higher density of states and valley degeneracys phrticular wire orientation has the
valleys with the heaviest mass (0.4/mwvhere g is the free electron mass) and the
largest degeneracyD€E6). Therefore, at a certain energy levef-KEg), there are more
states occupied compared to the other wires. T0@] [Wire with mass 0.27grandD=4
of the lowest valleys, follows. The [110] wire hidé® lowest charge density at a certain
energy level because of its lighter mass (0.d@mnd lower degeneracip€2) at .

Orientation differences in the velocityhe reverse trend is observed in Fig. 3f,
where [110] wire has the highest velocity due solighter mass (0.16sn As higher k-
states are occupied, the velocity increases since proportional to the slope of the
bands. Noticeable here, is the fact that the caveéocity in the [100] wire approaches
the [110] velocity as the Fermi level is pusheditite conduction band. The lighter
masses (0.16ghof the two-fold valleys in the [110] wire give an initial advanéagver
the heavier (0.27g) [100] wire valley masses. Once the heavier four-fold degeémera
off- valleys (with mass 0.61ghof the [110], and the heavy two-fold degenerdte o
valleys (with mass 0.94gnof the [100] start to populate, the carrier véies become
comparable in the two cases. The exact reasondhvehmasses have these values will be
addressed later on in the paper, however this sisatan guide through the reasons why

wires in different transport orientations have @iéint properties.

10



(b) Device performance comparison of NWs in diffecgientations

One of the points made in the previous paragrapé, camparisons of the
different wire orientations at the same Fermi lepekition into the dispersion of the
wires. Although this is a rough estimate of theesimproperties, the Fermi level is not at
the same position for all devices, except undecigpeases. In this section, the full self
consistent model is implemented to compare theopeednce of the nanowires. Figure 4
shows a performance comparison between the wirethen[100], [110] and [111]
orientations. The various performance quantitiesmshfurther on, are all compared at
the same OFF currenbgr) for all devices.

Gating induces same capacitance / charge in alewdirections:Figure 4a shows
the total gate capacitanc€d) vs. gate bias\g) of the three wires at the samgr. The
total capacitance in the three wires is very sinfita all gate biases for reasons we will
explain later on. However, this is an indicatioattthe same amount of inversion charge
is accumulated in all wires irrespective of theientations. Our calculation supports this
argument too, showing that the charge differendevéen the wires at high inversion
does not exceed 2%. In a relative performance casgra for wires in different
orientations, therefore, the amount of charge mall affect the relative performance.

Low semiconductor capacitanced@egrades the gate capacitance; @y 30%:

It is important to notice that for all three wirases, the capacitance value is degraded
from the oxide capacitance by almost 30%. Thisnsamount that corresponds to an
effective increase in the oxide thickness of 0.54which is 50% of the physical gate
oxide thickness {=1.1nm). This large gate control reduction is emmie of low
semiconductor capacitanc€d in low dimensional channels. The gate capacitaice

device is the series combination of the oxide cigace Cox) and the semiconductor

C.C .
79X For an electrostatically
CS + COX

capacitance @s) given by the simple relatidd, =
well behaved MOSFET devic€s should be an order of magnitude larger tikai so
that theCs and therefore the charge in the device is tot@iytrolled by the gate. In this
example, the oxide capacitance of the rectanguiactsre is 0.483 nF/mmumerically

calculated using a 2D Poisson solver that takes fthmging at the edges into

11



consideration. WithCs=0.3nF/m (maximum value of Fig. 4alis can therefore be

computed to b€ = 0.8nF/m, which is only twice the value of the oxide capacce

(less than an order of magnitude difference).

Cs controlling factors: Charge distribution peaknall Cy: Cs is defined as the
differential of the charge in the device with redp® the surface potential ). In 1D
systems, under a single band effective mass appatiin, the charge is the integral of

the 1D density of stateg:p) convoluted with the Fermi functiof(E-E)) over energy as:

_T(an) _ 1 can. 1
= —.HV—S( qg, f(E, - E- e)/ kT df gn. 1a

whereq is the charge of the electrong is the surface potentid; is the Fermi levelk,

is the conduction band edge anis the distance of tH& quantized subband abokgin

energy. Carrying on the integration, the equatioova results in:

m Jﬁdﬁﬁ(/w[(a- E-e)/kT)  Egn.1b

. 2m 1/2 ) qe
= - - ] / L )
q D ? VKTALLIE - B- )/ kT & T Eqgn. 1c

S

—c 1.8 Eqn. 1d
A I

The first part of Eqn. 1cCq, is the quantum capacitance, which is a measurteof
density of states at the Fermi levéls is degraded fromCq by a factor that is
proportional to how much; (the difference of thé" subband t&.) changes. Ideally, at
high inversion conditions should be constant, meaning that the quantizedsleralE.
shift by same amount and the subband levels caly gt in the potential well that
forms at the Si/Si@interface. This directly translates on the wavefiomcbeen able to
come closer to the interface as the surface isriedenore and more. However,can
float up as charge accumulates in the device, givise to the differential term in Eqn.
1d, and the wavefunction stays away from the iat&xf As shown earlier on in Fig. 2b,
this shift is almost 0.5nm. Other than the wavefiomcshift, Cq being small is the second
degrading factor ofCs as indicated in Egn. 1d. Figure 4b shows @keof the three
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nanowires as a function d&fg, calculated as the density of states at the Fézwal.
Clearly, for all wires the maximum value is belomF3nm, not even an order of
magnitude abov€ox=0.48nF/nm. The fact, that the position of the geadistribution

degradesCs from Cq by almost four times, G, = 0.8nF/m), indicates its large

significance on the device’'s capacitance. (Simt&viations of the semiconductor
capacitance from the quantum capacitance havebaiso observed in thin body devices
[35]).

Variations in G between different wire orientation&s shown in Fig. 4b, in all
wire casesCq is not constant, but undergoes large transitichgha Fermi level is
pushed inside the subbands at large gate biasessisTéxpected, sind€q is a measure of
the density of states at the Fermi level, and tliterdnces in the dispersion cause
differences inCo. ComparingCq for different wire orientations, the [111] wire shéhe
largestCq for most of the bias range because of the highesnim*=0.47r) and higher
degeneracy of its valleysDE6). The Co drop at high biases in the [111] case is
associated with the decreasing 1D density of states/ from the band edges, and due to
the fact that its bands flatten out aind do not extent as parabolic bands in k-space as
shown in Fig. 3d. On the other hand, the [100] Hri®] wires initially have lowetCq,
because of their lower density of states (lightasses and lower degeneracies). At high
biases, the upper valleys of the [100] and [110f#itart to get populated, which allows
a continuous increase i@ for these wires. More specifically, since the ¢geam all
cases is almost the same at a given bias, the samber of states in each wire need to
be occupied. The Fermi level in the [110] wire wldwer mass and smaller valley
degeneracies reaches the upper valleys faster@atea gate bias) than the [100] wire in
order to occupy the same number of states. Oneehtippens, th€q of the [110] wire
surpasses th&g of the [100] wire (around =0.4V).

Variations in G do not cause variations indC The differences irCq, between
wires in different orientations, however, are rarge enough to result in differences in
the total capacitances. As seen earl@s, is only partially responsible for the total
capacitance degradation. The small differencéSgmre smeared out iG¢ by the oxide
capacitance, and the charge shift from the intetféitat is very similar for all the above

13



wires. (This observation can of course be differarihe case of high-k dielectric oxides,
in which the importance &@q can be more pronounced).

Velocity controls the transport differences in eliéint orientated wiresAs
explained above, the charge is almost the samdl ithr@e nanowires. Since in the
ballistic limit the ON-current performance is givdry the product of “chargémes
velocity”, if the charge is the same, any perforowrdifferences will result from
differences in the carrier velocities. Figure 4o0wh the injection velocities of the wires
vs. gate bias\g). The [110] wire has the largest velocities wheriee [111] wire has the
lowest velocities. In all cases, the injection w#ies are not constant, but increase as the
lattice is filled with charge because faster higlergy carrier states are being populated.
This increase in velocities, calculated form thidéahvalue at low gate biases to the final
value at high gate biases can reach up to 17%eirj1thO] wires and even up to 27% in
the [100] and 24% in the [111] wire orientation easWhen comparing the velocities of
the different wires, however, the masses of théeyaldetermine the velocities of the

carriers. (In 1D, under the parabolic band appratiom, the velocity is proportional to

v~1/\/W). As a result, the [110] wire with m*=0.1nhas the highest velocity,

followed by the [100] wire with mass m*=0.23pand finally by the [111] wire of mass
m*=0.47my. The larger density of states of the [111] wirel @ larger degeneracy do
not allow the Fermi level to be pushed far into te@duction band. Therefore, only the
lower energy and slower carries are used, andeloeity in this case is low. In the [110]

wire case, the degeneracy is 2, and the subbarsitgenh states low, therefore the Fermi
level will be pushed far into the conduction baadd faster carries will be utilized as
shown in Fig. 4c.

Velocity differences affect the |-V differencdsie velocity difference directly
reflects on théps as shown in Fig. 4d in which the drive currentatafties of the wires
are compared at the samgr. The [110] and [100] wires perform better than th&l]
wire in terms of ON-current capabilities. The cutran the [110] wire stands ~5% higher
than the [100] wire and ~20% higher than the [1dite because of its lower mass. This
result must be qualified since the bandstructurgnefwires is a very sensitive function of
their quantization. The results presented herécarinese specific 3nm wire examples. In

cases where important dispersion parameters suttte aslative placement of the valleys
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in energy, masses and degeneracies, are alteféeteni conclusions might be drawn,

especially for the relative performance of the [[L@@d [110] wires which is not that

large. In the next section, an analysis is perfarroa how exactly these parameters
(valleys splittings that lift degeneracies, and ses$ are affected by quantization.

(c) Quantization influence on valley splitting améss variation

Quantization strongly affects both factors that tominthe performance, the
degeneracies and masses. In this section of ther pidue effect of quantization on these
parameters is examined. Degeneracies are contnoléedly by the orientation, but can
be lifted due to valley splitting [12-14] underatg quantization (both electrostatic and
structural).

Weak valley splitting in [100] and [111] quantizedres: Figure 5a-b shows the
E(k) of a 2nm wire in the [100] and [111] orientatiods slight valley splitting of the
degenerate valleys under quantization is obselwveithe case of the [100] the splitting is
10meV and in the case of the [111] wire, 24meV.SEhealues are less than the room
temperatur&gT=26meV and are not expected to have a significdatein the transport
properties of the nanowires at room temperature.

Strong valley splitting in [110] quantized wirest the case of [110] nanowires,
valley splitting is significantly larger. As shown Fig. 5c in theE(k) of a 2nm [110]
wire, and off- valleys experience valley splitting of their degeacies by 76meV and
14meV respectively. Figure 5d shows how this effestes with the spatial confinement
in the [110] wire. Although large nanowires (>5namg¢ not affected, the valleys splitting
can reach up to 200meV for thevalleys of narrow wires with sizes as narrow d&mnfn.
The valley splitting of the off- valleys, on the other hand, is not affected ashmQmnly
a few tenths of meVs of splitting are observedhis tcase. (It is noted here that the
splitting in the other wire orientations is smalldran the [110] wires of similar
guantization sizes even for wires below 2nm [14]).

Generally, masses increase with increase in quatitiz: The effective mass is

the second important transport performance dispergroperty that is affected by
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guantization of the nanowire cross section. Theedtipn velocity and quantum
capacitance strongly depend on the masses. Bothyuhatization and the transport
masses of nanowires under arbitrary wire oriematiare certain combinations of the
longitudinal M=0.89my) and the transverse effective masses=({.19m) of the Si
ellipsoids. Figure 6a shows the three pairs opstlids that form the conduction band
minima in Si, each characterized by they andz directional masses. The masses of the
valleys that appear in the nanowire dispersioraatematically included in tight-binding.
What will be shown is that under quantization, #hect values of these masses are
changed from their bulk values. In most cases, tigation results in an increase in the
effective mass. Figure 6b shows the variation eltwest valley transport masses as the
dimension of the wire cross section reduces. Ajdaxire cross sections, the mass of the
the [100] valley that is located af approaches the bulk transverse nmas®.19m. The
bulk mass of the [111] wire is larger since it iscambination ofm=0.19m and
m=0.89m (the bulk value is 0.43g[18, 36]. The mass in the [100] case almost desibl
as the dimension of the wire’s side decreases ffdmm to 1.5nm (88% increase). (The
3nm wire hasn*=0.27my as mentioned earlier). The corresponding incréasiee [111]
wire’s mass is 17%, with the 3nm wire having=0.47my. The off- valley masses
(upper valleys) of both [100] and [110] wires alsorease as the dimension reduces as
shown in Fig. 6¢. In the [100] off-valley case, a slight mass increase of 9% betuleen
7.1nm and the 1.5nm is extracted from the bandstrecalculations. The off-valley
mass increase in the [110] case is 11%.

[110] wire valley masses decrease with increase in quandizalin contrast to
the rest of the valleys, the valley mass of the [110] oriented wires decreasih
increase in quantization. As shown in Fig. 6b thessndecreases by 32% as the side of
the wire reduces from 7.1nm to 1.5nm. As mentioeadier, the mass of a 3nm [110]
wire is m*=0.16m, which gives an enhanced injection velocities anansport
characteristics of [110] wires over the rest of Wiges. Anisotropy and non-parabolicity
in the Si conduction band Brillouin zone cause timituitive behavior as explained in

the next section.
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(d) Understanding the nanowire mass variation dsrection of quantization.

Semi-analytical construction of the wire’s dispersi This distinctly different
observation in the masses of wires is a resulh@iion-parabolicity and anisotropy of the
Si bandstructure. Under any physical quantizatibe, subband levels will follow the
“particle in a box” quantization, as shown in Fta. The smaller the physical domain,
the larger the corresponding quantizedand the higher the energy levels of the
subbands. To estimate the quantization levels ef & conduction band ellipsoid
guantized along the longitudinal direction, the rggecontour in thex-y plane near the
band minima is plotted in Fig. 7b. (“Cut” throughet ellipsoid along its longitudinal
axis). Similarly to Fig. 7a, quantization bx of 2nm, 3nm, and 5nm will shift the energy
levels to the vertical lines shown in the figuréeTenergy levels at these lines will be the
relevant subbands in an ultra-thin-body (UTB) quaation — with one quantized
dimension. Figure 7c now, shows the energy cortaken at the 3nm line, perpendicular
to the contour of Fig. 7b in thez plane. An extra quantization in tlzadirection (the
second quantized dimension, as in the wire cask)leave only one allowed-space
variable, the transport direction one. This forrhe tLD dispersion of the wire. The
relevant 1D bands are the ones located at the dwiak lines of Fig. 7c. Lines for
Lz=2nm, 3nm and 5nm are shown. The solid line iaidis a relative subband for an UTB
device withLx=3nm andLz =¥ (k~=0, only one quantization dimension).

Mass and band edge extraction from the semi-amalytonstruction:The 1D
subbands of Fig. 7c are plotted in Fig. 7d fordhses of.z=2nm, 3nm and 5nm. (The
direction quantization i&x=3nm in all cases). The mass of these bands igrd@hsport
mass Y-direction) that the wire has in the [010] orierdat(equivalent to the [100] wire
orientation described in the previous sections)alfim cross sections raise the subband
energy, and increase the masses. Through thisgwooeth, the transport masses and the
placement of the subband edges in energy can hecedeédFrom the subband edges the
guantization masses can be extracted. The morga@iolic the bulk bandstructure is
at higher energies in the direction of quantizative slower the subbands rise in energy
with quantization compared to the parabolic bargkcahis results in larger quantization

masses. The more non-parabolic the bulk bandsteigsuin the transport direction, the
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larger the transport masses will be. All thesea#f@ppear in thin body channel devices
(UTB of Fig. 6d), however, they are significantlyre enhanced in the case of nanowires
because of the extra quantization of one more phlgdimension [19, 30].

Different orientations, different anisotropie¥he transport masses of wires in
other orientations can be explained similarly. Ewd in the bandstructure is the
anisotropy which results in different behavior inetquantization of the [100] to
guantization of the [110] axes. In [110] orientees, the [100] and [0-11] directions are
guantized. The [100] quantization is the same atethe one in Fig. 7b. Quantizing the
[0-11] direction, will result in extracting 1D basdby lines that cross Fig. 7d at 45°, (in
Lyz instead of horizontal). Figure 7e shows the fgabband of the dispersions of
structures withL.x=3nm andLyz=2nm, 3nm, 5nm an& , similar to Fig. 7c. Evident in
this case is the non-parabolicity of the dispers@as it is also evident in Fig. 5c. For
comparison purposes, Fig. 7g shows the poskjybranch of the dispersion, with all the
bands shifted to the origin. Clearly, as the strreetis quantized in the [0-11] direction,
the curvature of the dispersion increases, corredipg to a lowering of the transport
mass of the wires. In contrast to the [001] quamiin case of Fig. 7c, here the
anisotropy in the bandstructure results in a redocof the transport masses with
increase in quantization, in agreement with theuwation for the actual nanowire mass
shown in Fig. 6b. The magnitude of the mass vamais however smaller in the [0-11]
guantization direction compared to the [001] dikact (Similar anisotropic results have
been also obtained using empirical non-local pspatimtial and ab-initio GW
calculations [21]).

Limitations of the semi-analytical constructiohis construction method can
provide a rough guidance as to what the dispersioa nanowire will look like. The
method, however, does not include any of the icteyas between the bands/valleys
(which are enhanced when the material is physicalyfined in a nanowire), and lacks
any band coupling information. Effects such asesa#iplitting, that are a consequence of
band coupling, cannot be captured. The extractessmalues, as well as their variation
trends under quantization, are however quite ateuha the case of nanowire electronic

transport for nanowires larger than 3nm, where rh@ss is an important transport
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parameter, a first order estimation of the nancstiperformance can be drawn by using

this analytical mass extraction.

4. Conclusions

Transport properties of nanowires in different saort orientations ([100], [110]
and [111]) were examined using a 10 orbitdH3p* atomistic TB model self consistently
coupled to a 2D Poisson solver. A semiclassicdidbial model was used to calculate the
current-voltage characteristics of the nanowirebe Tdispersions of the nanowires
undergo changes under gate bias, which at some carsecause large lift of degeneracies
and small subband shifts. Although these changdsruself-consistency do not alter the
velocity and density of states of the wires, they associated with the spatial distribution
of charge that together with the small 1D densitystates can degrade the nanowire’s
capacitance by 30%. The quantum capacitance oflifferent oriented 3nm wires that
were investigated is a strong function of gate ,biag of similar magnitude in all wires.
Almost the same is also the total gate capacitafical nanowire devices in different
orientations investigated as well as the inversibarge. Due to their lighter mass, 3nm
[110] oriented wires have the maximum injectionoegties, whereas [111] oriented wires
the lowest injection velocities due to their higmeasses. The injection velocity reflects
directly on the current capabilities of the wiredere the [110] and [100] oriented wires
indicate the best performance in terms of ON-curoapabilities compared to the [111]
wires which are the worst. The masses of the waresa sensitive function of the wire
dimensions (below 7nm), and strongly influence theput performance of nanowire
devices. This is an effect that resides in the parabolicity and anisotropy of the Si
Brillouin zone that is particularly important inrehgly quantized devices. Valley
splitting is another effect strongly dependent amargization. [110] nanowires of
dimensions below 3nm are extremely sensitive ts. thinally, the authors would like to
mention that the simulator used in this study Wwél released as an enhanced version of

the Bandstructure Lab on nanoHUB.org [37]. Thisidation engine allows any user to
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duplicate the simulation results presented hereer(B00 users have utilized the

Bandstructure Lab in the past 12 months.
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Figure Captions

Figure 1:

(a) Simulation procedure schematic. Using an atticnss’d®s*-SO tight-binding model,
the bandstructure of the nanowire under considerais calculated. A semiclassical
ballistic model is then used to calculate the chadigstribution in the wire from the
source and drain Fermi levels. The charge is useal 2D Poisson for the electrostatic
solution of the potential in the cross sectionha tvire. The whole process is done self
consistently. (b) The lattice in the wire transportentations (surfaces) used — [100],
[110] and [111].

Figure 2:

Device features for a 3nm [100] rectangular wieeb) The 2D cross section showing the
charge distribution under low and high gate biasespectively. Even under high bias,
the charge distribution is located almost half aamaeter away from the oxide. This
causes degradation in the total capacitance oiittee The dots indicate the underlying
atomic positions. (c-dE(k) plots for the cases (a-b). The bandstructure featahange
under self consistencykss is the source Fermi level. (Zero energy indicaties

conduction subband edge.)

Figure 3:

(a-b) The bandstructure of a 3nm [110] orientedomare under low bias\(g=0V) (a)
and high bias\(c=0.8V) (b), andVp=0.5V. Under high biases the degeneracies of the
valley are lifted from 2 to 1. (c-d) The bandstwret of a 3nm [111] oriented nanowire
under low bias\{(c=0V) (c) and high biass=0.8V) (d) andvp=0.5V. (e) The charge in
the wire as a function of the difference of the dwetion band edge from the Fermi level
for two cases: (1) The Fermi level “scans” the Bguum bandstructure and the charge is
extracted, and (2) the charge is extracted from dhlké-consistent calculations with
potential variations in the lattice taken into ddesation. (f) The injection velocity for

the same case as (e). The changes in the dispénsimselves do not reflect much on the
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charge distribution or the injection velocities.€eTHifferences between the two models
result form the spatial information of the waveftion that corresponds to the

bandstructure changes.

Figure 4:

Performance comparison of the 3nm square wirelsarj1t00], [110] and [111] directions
at the same OFF-currenkofr) (a) The gate capacitand&; vs. gate bias\s). The
capacitance is similar for all wires, and degradiein the oxide capacitance by an
amount that corresponds to an increase in theteféeoxide thickness of 0.54nm. (b)
The quantum capacitandey vs. Vg of the three devices, which is a measure of the
density of states at the Fermi level. (c) Comparisetween the injection velocities of the
nanowires vsVe. In all cases, the velocity is not constant, Imetreases as the gate bias
increases. The increase is calculated by the differ between the value at high and

the value at low ¥. (d) Thelps vs. Vg for the three wires at the sarhgr. The velocity

difference directly reflects on the current diffeces.

Figure 5:

The effect of valley splitting in small nanowirgg-c) TheE(k) of a 2nm wire in the
[100], [111] and [110] orientations respectivelgt) The effect of valley splitting in the
[110] wire as the dimensions decrease. Thealleys are severely affected at cross

sections below 3nm, whereas the offalleys are not affected as much.

Figure 6:

(a) The three equivalent pairs of ellipsoids in te@duction band of Si are described by
the longitudinal and transverse masses. A comionatf these masses results in the
guantization and transport masses of nanowires ruadetrary orientations. (b) The
transport masses oriented in [100], [110] and [MKljwire dimension as calculated from
TB. At large wire cross sections, the [100] andO]lthat are located at, approach the
bulk m=0.19my. The mass of the [111] wire is larger since iisombination of mand
m;=0.89my. As the wire dimensions shrink, the mass of &[] wire reduces, whereas
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the masses of the other two wires increase. (c)ofle valley masses for the cases of
the [110] and [100] wires. Both increase as theedisions decrease. (The expected bulk
mass values for every orientation are denoted). Jdreentage change denoted is the
change in the effective masses between the 1.5nss naue (mostly scaled wire) and

the 7.1nm wire.

Figure 7:

(a) The energy levels of a quantized structuregusie “particle in a box” picture. Under
guantization, the subband edges and masses cardoeead from the materials’ bulk
dispersion with a numeric#l(k) diagram. (b) Energy contour at the middle of ohée

Si Brillouin zone ellipsoids calculated using thél 3D k-space information of the Si
Brillouin zone. A “cut” through the Si ellipsoid aig its longitudinal axis is shown.
Under quantization inLx=2nm, 3nm and 5nm, the relevant subband energies ar
indicated by the verticak=constant lines. (c) A “cut” through the Si ellipgo
perpendicular to its longitudinal axis at theline corresponding to the 3nm quantization
line of (b). The non-parabolicity and anisotropyesdent in this figure. The horizontal
lines indicate the relevant energy regions undether quantization in the y-direction for
Ly=2nm, 3nm and 5nm quantized structures. The swia labeled UTB is the relevant
band for an ultra-thin-body (UTB) device bk=3nm thickness in [001] with.z =¥ .
This is only quantized in thedirection. (d) The dispersions of the verticakebnin (c).
The masses and the band edge of the dispersiohdevithe ones that appear in a
guantized wire. (e) The 2D plot is the same ascinh The 45° lines correspond to a
guantization in the [0-11] fdryz=2nm, 3nm and 5nm. The solid line labeled UTB &s th
relevant band for an ultra-thin-body (UTB) devicelLx=3nm thickness in [001] with
Lyz=¥ . (f) The dispersions of the 45° lines in (e). T@n-parabolicity is evident in
this orientation. (g) Zoom of the right (positiveomentum) branch of (f) with all
dispersions shifted to the origin for comparisoss. the structure is quantized in [0-11],
the mass becomes lighter. The anisotropy in thikoBin zone is directly reflected on the

masses in the different wire orientations (as o Bb).
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Figure 3
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Figure 5
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Figure 7
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