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Abstract 

 

Low dimensional structures have demonstrated improved thermoelectric (TE) 

performance because of a drastic reduction in their thermal conductivity, əl. This has 

been observed for a variety of materials, even for traditionally poor thermoelectrics such 

as silicon. Other than the reduction in əl, further improvements in the TE figure of merit 

ZT could potentially originate from the thermoelectric power factor. In this work, we 

couple the ballistic (Landauer) and diffusive linearized Boltzmann electron transport 

theory to the atomistic sp
3
d

5
s*-spin-orbit-coupled tight-binding (TB) electronic structure 

model. We calculate the room temperature electrical conductivity, Seebeck coefficient, 

and power factor of narrow 1D Si nanowires (NWs). We describe the numerical 

formulation of coupling TB to those transport formalisms, the approximations involved, 

and explain the differences in the conclusions obtained from each model. We investigate 

the effects of cross section size, transport orientation and confinement orientation, and the 

influence of the different scattering mechanisms. We show that such methodology can 

provide robust results for structures including thousands of atoms in the simulation 

domain and extending to length scales beyond 10nm, and point towards insightful design 

directions using the length scale and geometry as a design degree of freedom. We find 

that the effect of low dimensionality on the thermoelectric power factor of Si NWs can be 

observed at diameters below ~7nm, and that quantum confinement and different transport 

orientations offer the possibility for power factor optimization.        
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I.  Introduction 

 

The ability of a material to convert heat into electricity is measured by the 

dimensionless figure of merit ZT=ůS
2
T/(əe+əl), where ů is the electrical conductivity, S is 

the Seebeck coefficient, and əe and əl are the electronic and lattice part of the thermal 

conductivity, respectively. The interrelation between ů, S, and əe in bulk materials keeps 

ZT low [1]. Some of the best thermoelectric materials are compounds of Bi, Te, Pb, Sb, 

Ag, and exhibit ZT ~ 1 [1, 2]. Recently, however, using low-dimensional structures, it 

was demonstrated that ZT could be greatly increased compared to their bulk counterparts, 

setting the stage for highly efficient TE energy conversion.  

 

It was initially suggested that thermoelectric efficiency could be improved at the 

nanoscale because of two reasons: i) Low-dimensionality and quantum size effects could 

improve the Seebeck coefficient [3], and ii) Small feature sizes enhance phonon 

scattering on nanoscale interfaces and reduce thermal conductivity [4]. Indeed, large 

improvements of ZT in low-dimensional structures such as 0D quantum dots, 1D 

nanowires (NWs), 2D superlattices and bulk nanocomposites have recently been 

achieved [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. This was even achieved for common 

materials, and importantly Si based systems such as Si, SiGe, and SiC [15, 12, 13, 14]. 

Silicon, the most common semiconductor with the most advanced industrial processes, is 

a poor TE material with ZTbulk~0.01. Si NWs, on the other hand, have demonstrated 

ZT~1, a 100X increase [12, 13, 14, 15], and they are now considered as emerging 

candidates for high efficiency and large volume production TE applications [16].  

 

Most of the benefit to the measured ZT values of NWs originates from a dramatic 

reduction in the lattice thermal conductivity əl [15, 17, 18, 19, 20]. It has very recently 

become evident, however, that benefits from əl reduction are reaching their limits, and 

further increases of ZT can only be achieved through improvements in the power factor 

ůS
2
 [16, 21]. By nanostructuring, the electronic structure could be engineered to tune the 

Seebeck coefficient [3, 7, 22] and the electrical conductivity [23] independently, which 

could maximize ůS
2
. For example, Hicks and Dresselhaus suggested that the sharp 
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features in the low-dimensional density of states function DOS(E) can improve the 

Seebeck coefficient [3, 7]. Mahan and Sofo have further shown that thermoelectric 

energy conversion through a single energy level (0D channel) can reach the Carnot 

efficiency when əl is zero [24]. Because of the strong interconnection between ů and S, 

and their dependence on the geometrical features, involved simulation capabilities that 

account for the atomistic nature over large length scales are necessary in order to guide 

the design of such devices.      

 

In this work the atomistic sp
3
d

5
s*-spin-orbit-coupled (sp

3
d

5
s*-SO) tight-binding 

model [25, 26, 27, 28, 29] is used to calculate the electronic structure of thin silicon 

NWs. Two transport formalisms are employed to calculate the thermoelectric coefficients 

ů, S, and the power factor ůS
2
: i) The Landauer formalism [30, 31, 32, 33, 34], and 

linearized Boltzmann theory [23, 24, 35]. We describe the numerical methodologies and 

the approximations used, and demonstrate why such methodology is appropriate and 

efficient for this purpose. We consider different NW diameters, different transport 

orientations ([100], [110], [111]), different cross section geometries and various relevant 

scattering mechanisms. Using experimental values for əl in Si NWs, we estimate the ZT 

figure of merit. Our results explore effects of bandstructure features resulting from 

scaling the channel cross sections on the TE coefficients. Design optimization directions 

based on bandstructure engineering in low-dimensional channels are identified.  

 

The paper is organized as follows: In section II we describe the Landauer 

approach which is used to investigate the effect of the geometrical features on the 

electronic structures and the thermoelectric coefficients of ultra-scaled Si NWs. In section 

III  we describe the numerical approach to couple the TB model and Boltzmann transport 

theory, and the approximations used. In section IV we investigate the effects of NW cross 

section size, orientation, and scattering mechanisms on the thermoelectric coefficients. 

Finally, in V we conclude. 

 

II.  Ballistic Landauer approach for TE coefficients 
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   The NW bandstructure is calculated using the 20 orbital atomistic tight-binding 

sp
3
d

5
s*-SO model [25, 28], which is sufficiently accurate and inherently includes the 

effects of different transport and quantization orientations. We consider infinitely long, 

uniform, silicon NWs in the [100], [110] and [111] transport orientations as shown in Fig. 

1, with different cross section shapes. We assume passivated surfaces. The passivation 

technique details are provided in Appendix 2 [36]. These geometrical features have an 

impact on the electronic structure and the transport properties. Figure 2 shows examples 

of n-type NW electronic structures. The lowest subbands are shifted to the same origin 

E=0eV for comparison purposes. For brevity, only half of the k-space is shown. Figure 2a 

and Fig. 2b show the dispersions of [100] NW with diameters of 3nm and 12nm, 

respectively. As the diameter is reduced, the number of subbands is reduced, and the 

relative shift between the ũ and off-ũ valleys also changes. The degeneracies (ɖ) of the ũ 

and off- ũ valleys are ɖ = 4 and ɖ = 1, respectively. Figure 2c and Fig. 2d show the 

corresponding dispersions for the [111] NW. The shape of the dispersion is different for 

different orientations. The degeneracy of this valley is ɖ =6. For [110] NWs, Fig. 2e 

shows the dispersion of the 3nm wide and 12nm tall rectangular NW (strong (1-10) 

surface quantization), whereas Fig. 2f the dispersion of the 12nm wide and 3nm tall NW 

(strong (001) surface quantization), which produce different electronic structures. The 

degeneracy of both, the ũ and off- ũ valleys is ɖ =2. This dependence of the dispersions 

on geometry will result in different electronic and thermoelectric characteristics.  

 

In this section, the ballistic Landauer formalism [30] is used to extract the TE 

coefficients. Although ballistic transport cannot be achieved in a realistic thermoelectric 

device, the results in this section indicate the upper performance limit, and it is a ñfastò 

way to identify whether geometry could have an effect on TE properties through 

bandstructure engineering. The results from this method are compared to the results from 

the diffusive Boltzmann transport method in section III.  

 

In the Landauer formalism the current is given by: 
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where vk is the bandstructure velocity, and f1, f2 are the Fermi functions of the left and 

right contacts, respectively. Auxiliary functions R
(Ŭ)

(f1, f2,T) can be defined as: 
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where µ1, µ2 are the contact Fermi levels, and Ek is the subband dispersion relation. This 

formula is the same as the one described in references [31, 37], where for small driving 

fields ȹV, the linearization 1
1 2 0

f
f f q V

E

µ
- =- D

µ
 is applied. Here, however, the 

computation is explicitly performed in k-space rather than energy-space. From these 

functions, the conductance G, the Seebeck coefficient S, and the electronic part of the 

thermal conductivity əe, can be derived as  
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Using this approach, the power factor (defined as ůS
2
=G/Area*S

2
) has been 

calculated. It is shown in Fig. 3 as a function of the one-dimensional carrier 

concentration, for cylindrical n-type NWs in the three transport orientations [100], [110] 

and [111] for two different diameters D=3nm and D=12nm. Comparing the magnitude of 

the power factor for D=3nm, the [111] NW with a 6-fold degenerate band has a higher 

power factor than the other NWs. The [100] NW, with a 4-fold degenerate ũ-valley 

follows, whereas the [110] NW with a 2-fold degenerate ũ-valley has the lowest power 

factor. Subbands with higher degeneracies, or subbands with edges very close in energy, 

improve the Seebeck coefficient which can be beneficial to the power factor. We show in 
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section III, however, that once scattering is included in the calculation, the conductivity is 

degraded, which turns out to be a more dominant effect than the increase in Seebeck 

coefficient. For D=12nm in Fig. 3, the NW bandstructure becomes bulk-like, and any 

orientation effects that existed because of the bandstructure differences in lower 

diameters, are now smeared out. The interesting observation, however, is that under 

ballistic conditions, it seems that it is possible to improve the thermoelectric power factor 

by feature size scaling, in agreement with other theoretical ballistic transport studies, [31, 

32, 33, 34]. The magnitude of these benefits, however, is only within a factor of two.  

 

To also emphasize the effect of the different confinement orientations, Fig. 4a 

shows the power factor for n-type [100] NWs, as a function of the carrier concentration 

for different confinement conditions for a square NW. Starting from the 12nm x 12nm 

ñbulk-likeò NW, we examine two cases: (i) we reduce the size of one of the sides, i.e. the 

height H is scaled to H=3nm, while the width W is kept at W=12nm in decrements of 

1nm (red lines). This represents the case of scaling from bulk towards ñthin-bodyò 

devices. (ii) We scale both the width W and height H simultaneously down to W=H=3nm 

in decrements of 1nm (blue lines). In both cases, decreasing the feature size of either side 

increases the peak of the power factor. The increase is larger when both sides are scaled, 

noted (3,3). In this case, cross section scaling is beneficial for the power factor. Those 

benefits are ~50%, and appear for side sizes below ~7nm (for sizes above that the power 

factor saturates). 

 

Figure 4b, shows the same features for the n-type [110] NWs. The sides are [1-10] 

in the width and [001] in the height directions. Two device families are shown: (i) 

Devices with constant width along [1-10] at W=3nm, while the height along [001] varies 

from H=3nm to H=12nm (thin and tall NWs ï red lines). (ii) Devices with the reverse 

aspect ratio, for which W varies from W=3nm to 12nm, while H is fixed at H=3nm (wide 

and thin NWs ï blue lines). The peaks of the power factors of the first device series (red 

lines) are higher than those of the second device series (blue lines). Interestingly, they are 

even higher than the peak of the fully scaled 3nm x 3nm NW, indicating that cross 

section scaling is not always beneficial, even for ballistic channels. The relative 
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performance in these channels, as in the case of the ones described in Fig. 3, originate 

from the higher Seebeck coefficient, which is a consequence of the larger number of 

subbands/degeneracies in the electronic structure of this nanowire near the conduction 

band edge. The 3nm x 12nm NW has a higher performance than the 12nm x 3nm 

because, as previously shown in Fig. 2e, the band edges of the ũ and off-ũ valleys are 

nearby in energy. For the 12nm x 3nm NW in Fig. 2f, the off-ũ valleys are higher in 

energy and do not participate in transport.           

 

Figure 4c and Fig. 4d show the figure of merit ZT values of the devices in Fig. 4a 

and Fig. 4b, respectively, using a single value of əl=2W/mK for the lattice part of the 

thermal conductivity, which was experimentally demonstrated for NWs [13, 15, 18]. ZT 

follows the shape and trends of the power factor. Interestingly, under ballistic 

assumptions, very high ZT values up to 4 can be achieved. We emphasize that such a low 

value for the thermal conductivity has experimentally only been achieved in rough or 

distorted NWs. We still use it, however, although for electrons we consider ballistic 

transport. Our intention here is to provide an idealized upper value for the ZT in Si NWs. 

As we will describe later on in section IV, such values cannot be obtained once surface 

roughness scattering is incorporated. On the other hand, other methods for achieving very 

low thermal conductivity values have been theoretically proposed, which do not rely on 

surface roughness. Markussen et al., has proposed that Si nanowires, having surfaces 

decorated with molecules could also significantly reduce thermal conductivity, for which 

case our results are more relevant [38].        

 

Another possibility to further improve thermoelectric performance is by adjusting 

the band positioning through gating. The gate electric field, similar to transistor devices, 

could shift the bands and change the thermoelectric properties. Figure 5 demonstrates this 

effect. Figure 5a shows the electronic structure of the D=12nm [111] n-type nanowire 

under flat potential in the cross section, whereas Fig. 5b under high gate inversion 

conditions. The separation of the bands has changed, and this results in an improvement 

of the thermoelectric ballistic ZT value by ~40%, which is a significant improvement. 

Careful design of the subband placement is, therefore, needed for improved performance. 
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The nanostructure geometry enters the design through subband engineering. The tight-

binding (TB) model is particularly suited for this, because the computational domain can 

be extended beyond 10nm, and the effect of length scale can be properly investigated.       

 

III.  Linearized Boltzmann approach for TE coefficients 

 

The ballistic Landauer approach emphasizes the effect of the Seebeck coefficient 

through subband positioning, whereas the conductivity of the channel is not affected by 

the otherwise enhanced scattering in ultra-narrow channels. In this section, we describe 

an approach to couple the TB model to linearized Boltzmann transport theory in order to 

investigate thermoelectric (TE) properties in 1D Si NWs in the diffusive transport 

regime. Several approximations are made in order to make the computation more robust, 

without affecting the essence of the conclusions. The entire procedure is described in 

detail in our previous works [23, 39]. Here, we only present the basic formalism, but we 

focus on the numerical and computational details of the method. 

 

In Linearized Boltzmann theory, the TE coefficients are defined as:  
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The transport distribution function ()EX is defined as [24, 35]: 
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where ()
1 n

n

x

E
v E

k

µ
=
µ

 is the bandstructure velocity, ( )n xkt  is the momentum relaxation 

time for a carrier with wave-number kx in subband n, and 
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is the density of states for 1D subbands (per spin). The transition rate ( )', ,n m x xS k k  for a 

carrier in an initial state xk  in subband n to a final state 
'

xk  in subband m is extracted 

from the atomistic dispersions using Fermiôs Golden Rule [40]:    
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Usually, the momentum relaxation times are calculated by: 
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where in 1D the angle J can take only two values 0J=  and J p= [40, 41]. 

In this work, we calculate the relaxation times by: 
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Both are simplifications of the actual expression that involves an integral equation for nt 

[41, 42, 43, 44]: 
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While self-consistent solutions of this equation may be found, this is computationally 

very expensive, especially for atomistic calculations. Therefore, it is common practice in 

the literature to simplify the problem [45, 46, 47, 48], and often sufficiently accurate 

results are obtained using the above approximations [42, 43]. For a parabolic dispersion, 

the use of Eq. 8 and Eq. 9 is equivalent. For a generalized dispersion, however, where the 

effective mass of the subbands is not well defined and the valleys appear in various 

places in the Brillouin zone, and the use of Eq. 9 is advantageous.  
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The matrix element between a carrier in an initial state xk  in subband n and a 

carrier in a final state 'xk  in subband m is defined as: 
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where the total wavefunction is decomposed into a plane wave xik x
e in the x-direction, and 

a bound state ()vF R  in the transverse, in-plane, with R  being the in-plane vector. 

()SU r  is the scattering potential and W is the normalization volume. We note here that 

Eq. (11), and later on Eq. (14) and Eq. (23) involve integrals of the function Fm/n over the 

NW in-plane R. However, Fm/n is only sampled on the atomic sites. In the actual 

calculation the integrals over R are converted to summations over the atomic sites. The 

procedure is described in detail in Appendix 1. 

  

Elastic and inelastic scattering processes are taken into account. We consider bulk 

phonons and following the same rules when selecting the final states for scattering as in 

bulk Si. For n-type nanowires (NWs), the elastic processes due to elastic acoustic 

phonons, surface roughness (SRS), and impurity scattering are only treated as intra-valley 

processes, whereas inelastic processes due to inelastic phonons are only treated as inter-

valley (IVS). An example of such transitions is shown in Fig. 6 for the D=3nm [110] 

NW. Although all valleys from the bulk Si electronic structure collapse from 3D to 1D k-

space in our calculations, we carefully chose the final scattering states for each event by 

taking into account the degeneracies of the projected valleys for each orientation 

differently, as also indicated in Fig. 6. For inelastic transitions all six f- and g-type 

processes are included [40, 49]. For p-type NWs we consider ADP (acoustic deformation 

potential) and ODP (optical deformation potential) processes which can be intra-band and 

inter-band as well as intra-valley and inter-valley. 

 

For the scattering rate calculation, we extend the usual approach for 3D and 2D 

thin-layer scattering commonly described in the literature [40], to 1D electronic 
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structures. For phonon scattering, the relaxation rate of a carrier in a specific subband n 

as a function of energy is given by [23, 39]: 
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where phw  is the phonon energy, and we have used xALW= . For optical deformation 

potential scattering (ODP for holes, IVS for electrons) it holds  
2

2,q OK D=  whereas for 

acoustic deformation potential scattering (ADP or IVS) it holds 
2

2 2

q ADPK q D= , where 

D0 and DADP are the scattering deformation potential amplitudes. Specifically for elastic 

acoustic deformation potential scattering (ADP), after applying the equipartition 

approximation, the relaxation rate becomes: 
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where suis the sound velocity in Si. 

  

In the expressions above, the quantities in the right-hand-side are all k-resolved 

when computed from the electronic structure E(k), whereas the scattering rate in the left-

hand-side is a function of energy. The ŭ-function in Eq. (12) and (13) states energy 

conservation. Numerically, the E(k) relation needs to be discretized in energy. All states 

are sorted in energy. and at a particular energy, arrays with all relevant k-states from all 

subbands are constructed.  

 

One of the computationally most demanding steps in terms of memory 

requirements is the calculation of 
'x x

nm

k kA , the wavefunction overlap between the final and 

initial states. The calculation of this quantity involves an integral of the form: 

    ()
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For the larger NWs, this calculation of the matrix elements imposes a huge computational 

burden. All wavefunctions of every k-state for every subband need to be stored because it 

is not known a priori for each initial state which are the corresponding final scattering k-

states and at which subbands when calculating the electronic structure, as indicated in the 

scattering examples of Fig. 6. The D=12nm structures that could include 5500 atoms each 

described by 20 orbitals, and a typical k-space grid of 200 points and considering 100 

subbands, require several tens of Gbytes for the storage of the wavefunctions alone. For 

computational efficiency, therefore, we use the following scheme: on each atom we add 

the probability density of the components of each multi-orbital wavefunction, and 

afterwards perform the final/initial state overlap multiplication. In such way, we 

approximate the form factor components of a lattice atom at a specific location 0R  by: 
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where ,a b run over the tight-binding orbitals of a specific atom. With this the overlaps 

are computed using the probability density of each state, as in a single orbital (i.e. 

effective mass) model, although we still keep the kx-dependence of the wavefunctions. 

The approximation in Eq. 15 is important because it reduces the memory needed in the 

computation by 20X, allowing simulations of large NW cross sections with only minimal 

reduction in accuracy. Indeed, our numerical overlaps agree with the analytical 

expressions for the wavefunction overlaps if one assumes sine or cosine wavefunctions 

and parabolic bands, which can be derived to be 9 / 4A for intra-band and 1/ A for inter-

band transitions, where A is the cross section area of the NW [31, 40]. This is clearly 

indicated in Fig. 7, where we show the wavefunction overlap for the n-type [100] and 

[110] NWs with D=6nm between the state k=0, in subband n=1, and several final states in 

units of 1/A. In Fig. 7a, the intra-band transitions are shown with final states in subband 

m=1, and varying k-values. The wavefunction overlaps are indeed very close to the 
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analytical value of 9/4. In Fig. 7b, the inter-band transitions are shown with final states in 

subbands m=1,2,é,12 and k=0. The first point, for m=1 is the intraband transition which 

gives ~9/4, whereas for higher bands the overlaps reduce to lower values around ~1. The 

values are very close to the analytical ones, do not have significant k-dependence, and 

should not affect the qualitative nature of the results significantly. The price to pay, 

however, is that with this simplification the phase information for the wavefunctions is 

lost, and the selection rules are incorporated into the scattering rate calculation ñby 

handò. However, this treatment is consistent with that for scattering in bulk and ultra-

thin-layer structures reported in the literature. Still, even after this simplification, the 

storage of the probability density for the larger diameter NWs still requires several Giga 

bytes of memory.            

 

For surface roughness (SR), we assume a 1D exponential autocorrelation function 

[50] for the roughness given by: 
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with ȹrms = 0.48nm and LC = 1.3nm [48]. We derive the surface roughness matrix element 

assuming that SR only causes a band edge shift. The scattering strength is given by the 

shift in the subband edges with diameter scaling , /C VE DD D [51, 52]. The transition rate 

is derived as: 
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     (17)  

where ' .x x xq k k= -  As described by various authors, the band edge variation is the cause 

of the major impact of SRS in ultra-scaled channels [48, 51, 52, 53, 54]. In Refs [48, 52] 

it was shown that that the SRS limited low-field mobility in ultra-thin nanostructures 

follows a L
6
 behavior, where L is the confinement length scale, originating from this 

subband shift due to the variation of L. This SRS model is a simplified one, compared to 

the ones described in Refs [48, 55, 56, 57] that account for additional Coulomb effects, 

the wavefunction deformation at the interface, and the position of electrons in the 

channel. These effects are ignored here since they only cause quantitative changes in our 
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results, whereas our focus is on qualitative trends that originate from geometry-induced 

electronic structure variations. 

 

Figure 8a and Fig. 8b show the shift in the band edges /E DD D as a function of 

diameter for the conduction and valence subbands, respectively. Indeed, the trends follow 

a D
-3
 power law both for electrons and holes as expected, with some minor deviations. 

For the n-type, the lowest valleys have slightly lower band edge shifts compared to the 

higher valleys. In the calculation of the SRS, the ũ and off-ũ valleys are taken separately 

into account when calculating the scattering rate. The orientation dependence is more 

evident in the case of p-type NWs.  The band edge shifts are larger for the [100] NWs, 

whereas the band edges of the [111] NW are affected the least by diameter variations. 

The sensitivity of the band edges can be directly correlated with a confinement effective 

mass *

Cm . Using the simple notion of a particle in a box where the ground state energy is 

2 2 * 2/ 2 CE m Dp= , approximate values for *

Cm  can be extracted. These are shown in Fig. 

8c and Fig. 8d. For n-type NWs, the [110] orientation shows the largest *

Cm , whereas for 

p-type NWs the [110] and [111] NWs have the largest *

Cm . The slight deviation in the 

band edges from the D
-3

 law at smaller diameters, which reduces the rate of increase in 

the scattering matrix element, are also reflected as an increase in the confinement 

effective mass. The value of *

Cm  of the n-type NWs lies between the longitudinal and 

transverse bulk Si masses of ml=0.9m0 and mt=0.19m0. For p-type NWs, the *

Cm  values 

for the larger NW diameters are close to the bulk Si heavy-hole mass mhh=0.4m0. For the 

[100] orientation they remain in that region for the smaller diameters as well. For the 

[110] and [111] orientations on the other hand, *

Cm  increases as the diameter is reduced. 

This is an important observation that indicates that the p-type [111] and [110] NWs will 

be less sensitive to surface roughness scattering (SRS). For thermoelectric materials this 

can be especially important since SRS is needed for the reduction in thermal conductivity 

əl. The fact that an intrinsic bandstructure mechanism makes the conductivity more 

tolerant to SRS could help in power factor optimization in such channels in which rough 

boundaries are favored.              
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For ionized impurity scattering the scattering potential is approximated by:  

       ()
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       (21) 

where R  is the position of an electron in the 2D cross section at 0x= , influenced by an 

impurity at ( ), 'x R , and the x direction is assumed to extend to infinity. The 3D 

screening length LD is given by: 
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where ( )Fa hÀ  is the Fermi-Dirac integral of order Ŭ, and n  is the carrier concentration. 

The matrix element for electron-impurity scattering then becomes: 
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where the expression in the brackets is the Greenôs function of the infinitely long channel 

device. For a cylindrical channel, the expression in the parenthesis is the modified Bessel 

function of second kind of order zero, ( )0 , 'K q R [48, 58, 59, 60].  

 

The total transition rate due to impurity scattering is computed after taking the 

square of the matrix element, multiplying by NILx, the number of impurities in the 

normalized cross sectional area of the NW in the length of the unit cell, and integrating 

over the distribution of impurities in the cross sectional area (over'R ). The impurities are 

assumed to be distributed uniformly in the volume considered.  

 

The transport distribution function (TD) in Eq. 5 turns out to be a very convenient 

means to understand the effect of the electronic structure on the thermoelectric (TE) 

coefficients. Figure 9a shows the phonon-limited TDs for n-type NWs of D=3nm. The 
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TDs for the three different orientations [100], [110] and [111] are shown. There are two 

observations that determine the performance of the NWs. i) The low energy linear region, 

where only one subband participates in transport, with slope proportional to */ mh , where 

h is the degeneracy of the subband [39]. ii) The separation of the TD from the Fermi 

level, Fh . The closer the TD is to the Fermi level for a particular carrier concentration 

and the higher its slope, the larger the conductivity and mobility will be. This is shown in 

Fig. 9b, where the orientation dependence of the mobility correlates with the order the 

TDs appear with respect to the Fermi level. It is important to note that since the transport 

and density-of-states (DOS) effective masses (m*) are the same for NWs, a reduction in 

*m  will not only reduce Fh  in order to keep the carrier concentration fixed, but it will 

also increase the TD slope, finally having a doubly positive impact on the conductivity 

[39, 61]. Figure 9c shows a different situation, regarding the TDs for p-type NWs of 

D=12nm in the three orientations. As the NW diameter increases, the DOS of the NWs 

approaches the bulk DOS, and Fh  is the same for all NWs. Their slope, however, is 

different, which is reflected in the large anisotropy in the mobility in Fig. 9d. Note that 

there are more subbands which result in more peaks in the TDs of the larger NWs 

compared to the narrower ones.  

 

As mentioned previously, one of the approximations used is that of bulk phonons. 

Bulk phonons provide an ease of modeling and allow the understanding of the 

bandstructure effects on the TE coefficients, still with good qualitative accuracy in the 

results. Confined phonons in NWs can have very different dispersions and properties than 

bulk. However, the effect of phonon confinement for the thinnest NWs examined in this 

work is not that strong; it can be of the order of 10-20% (reduction in conductivity), and 

declines fast as the diameter increases [45, 46, 47, 62]. In the literature it is common to 

employ higher than bulk deformation potential values to account for phonon confinement 

[48, 63, 64, 65]. Here we use deformation potential parameters 1013.24x10 eV / mholes

ODPD = , 

5.34 eVholes

ADPD = , and 9.5 eVelectrons

ADPD =  from Refs [45, 46, 61] which are more suitable 

for NWs. All other electron-phonon coupling parameters are the bulk values taken from 

[40]. The qualitative behavior of our results mostly depends on the shape of the 
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bandstructure and not on the strength of the phonon scattering mechanisms. For a more 

quantitative description of the results, phonon confinement has to be accounted for. 

However, even in that case, phonon scattering is not the major scattering mechanism in 

NW devices suited for TE applications. This is clearly demonstrated in Fig. 10, again 

using the TD features for ADP-limited (blue-dotted), ADP-ODP-limited (blue-solid), 

SRS-limited (red), impurity scattering-limited (green), and the TD including all scattering 

mechanisms (black). In Fig. 10a moderate values for surface roughness (ȹrms=0.24nm) 

and impurity concentration (n0=10
18

/cm
3
) are used. Strong scattering will lower the TD 

value and degrade conductivity. From the important low energy region, we observe that 

both SRS and impurity scattering mechanisms are stronger than phonon scattering. Figure 

10b shows the same features, but with ȹrms=0.48nm and n0=10
19

/cm
3
, which are more 

relevant for high performance thermoelectric devices (around the peak of the power 

factor as it will be shown in section IV). SRS and impurity scattering are much stronger 

than phonon scattering. A calculation of the phonon contribution to the total scattering 

rate shows that it is only 12% and 6% in the situations of Fig. 10a and Fig. 10b, 

respectively, even with the larger than bulk deformation potential values [23]. The 

strongest mechanism is impurity scattering, which dominates the scattering processes at 

such high concentrations. Indeed, this is in agreement with impurity scattering in bulk Si 

which reduces the mobility by almost an order of magnitude from the phonon-limited 

value at such high concentrations [66]. This shows that the details of phonon scattering 

strength for NW devices might not be of great importance to the total channel 

conductivity. This also demonstrates the importance of modulation doping in achieving 

high thermoelectric performance.       

 

 

IV.  Si nanowire thermoelectric coefficients 

 

Geometrical features such as diameter and orientation will affect the electronic 

structure, and influence the electrical conductivity and the Seebeck coefficient.  If one 

considers a specific carrier concentration, the influence of geometry shows up is two 

ways: i) The band edges (or transport distribution functions TD) shift with respect to the 
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Fermi level as the geometry changes. ii) The effective masses (or carrier velocities) 

change. The changes will be different for different NW cases. A change in F F CE Eh = -  

will affect both the conductivity and the Seebeck coefficient. This effect is shown in Fig. 

11a and Fig. 11b, respectively, using a simple 1D subband and effective mass 

approximation. Changes in Fh  affect the conductivity exponentially, but affect the 

Seebeck coefficient only linearly, (and in an inverse way). The conductivity, therefore, is 

affected much more than the Seebeck coefficient. At a specific carrier concentration, 

changes in Fh  can happen as follows: i) In a NW channel with only a few subbands, once 

the diameter is reduced, Fh  increases in order to keep the carrier concentration constant 

as explained in detail in Refs [23, 39]. This reduces the conductivity exponentially. ii) 

The DOS changes through electronic structure modifications and Fh  will adjust to keep 

the carrier concentration constant.  

 

As a consequence, since the electronic structures of the NWs in different 

orientations are different, Fh  will differ as well, resulting in orientation and geometry 

dependence of TE performance. Figure 12 shows the power factor for the n-type (solid) 

and p-type (dashed) NWs with D=10nm, in the [100] (blue), [110] (red), and [111] 

(green) transport orientations. The Boltzmann transport formalism was used. Some 

orientation dependence can be observed. Especially in p-type NWs the [111] orientation 

gives almost ~2X higher power factor than the other two p-type NW orientations. Note 

that p-type NWs perform lower than the n-type NWs for this NW diameter, but this 

difference is less severe for smaller diameters [23].   

 

The conductivity usually degrades with diameter reduction because of the 

enhancement of scattering mechanisms such as phonon and surface roughness scattering 

(SRS) at smaller feature sizes. Figure 13 shows the effect of the diameter reduction on the 

TE coefficients for the [100] n-type NW at room temperature. Phonon scattering and SRS 

are considered. Figure 13a shows that the electrical conductivity decreases as the 

diameter of the NW is reduced. On the other hand, the Seebeck coefficient in Fig. 13b 

increases for the smaller diameters due to an Fh  increase. Overall, the power factor in 
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Fig. 13c decreases with diameter, because the conductivity is degraded much more than 

the Seebeck coefficient is improved. Using an experimentally measured value for the 

thermal conductivity əl=2W/mK [15, 18], we compute the ZT figure of merit in Fig. 13d. 

ZT is reduced with diameter reduction, following the trend in the power factor. Two 

important observations can be made at this point: i) The conclusions are different from 

what previously described in Fig. 3 and Fig. 4 for ballistic transport. The increase in the 

power factor and ZT at reduced feature sizes is not observed when scattering is 

incorporated. On the contrary, the performance is degraded, because of a reduction in the 

conductivity. ii) ZT ~0.5-1 can be achieved in Si NWs, in agreement with recent 

experimental measurements [12, 13] (reduced from ZT~4 under ballistic considerations in 

Fig. 4). On the other hand, the value əl=2W/mK used for the calculation of ZT is 

measured for Si NWs of diameters D=15nm [15, 18]. This might be even smaller for 

smaller NW diameters or even orientation dependent [67, 68]. The power factor and ZT 

could potentially change and higher performance could be achieved. Nevertheless, the 

magnitude of these results is in agreement with other reports, both theoretical [37, 69] 

and experimental [12, 13, 14, 65].  

  

 The results in Fig. 13 only consider phonon scattering and SRS. The peak of the 

power factor, however, appears at carrier concentrations of 10
19

/cm
3
. In order to reach 

such concentration high doping levels are required and the effect of impurity scattering 

thus cannot be excluded. In Fig. 14, we demonstrate the effect of different scattering 

mechanisms for the n-type [100] NW of diameters D=5nm. The conductivity in Fig. 14a 

is strongly degraded from the phonon-limited values (blue) once surface roughness 

scattering-SRS (black) and most importantly impurity scattering (red) are included in the 

calculation. The impurity concentration used at each instance is equal to the carrier 

concentration. The Seebeck coefficient in Fig. 14b does not change significantly with the 

introduction of additional scattering mechanisms because it is independent of scattering 

at first order [31]. The conductivity dominates the power factor, which is drastically 

reduced due to SRS and mostly impurity scattering (Fig. 14c). This can also reduce the 

ZT as shown in Fig. 14d from ZT~1 down to ZT~0.2. Since impurity scattering is such a 
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strong mechanism, for high performance NW TEs alternative doping schemes need to be 

employed such as modulation doping or charge transfer techniques [65, 70, 71, 72].  

 

V.  Conclusions 

  

 We presented a methodology that couples the atomistic sp
3
d

5
s

*
-SO tight-binding 

model to two different transport formalisms: i) Landauer ballistic and ii) Linearized 

Boltzmann theory for calculating the thermoelectric power factor in ultra-thin Si 

nanowires. We introduced some approximations needed to make such methodology 

robust and efficient, and explained the differences in the conclusions obtained from these 

two different transport methods. Using this formalism the computational domain can be 

extended to ñlargeò feature sizes (>10nm) still accounting for all atomistic effects, so that 

the length scale degree of freedom can be properly used as a design parameter. We show 

that geometrical features such as cross section and orientations could potentially provide 

optimization directions for the thermoelectric power factor in NWs. In the Si NWs 

investigated, low-dimensionality and geometrical features affect the electrical 

conductivity much more than the Seebeck coefficient. The conductivity is, therefore, the 

quantity that controls the behavior of the power factor and the figure of merit ZT, in 

contrast to the current view that the low-dimensional features could provide benefits 

through improvements in the Seebeck coefficient. We finally show that impurity 

scattering is the strongest scattering mechanism in nanowire thermoelectric channels, and 

ways that allow high carrier concentration without direct doping could largely improve 

the performance.  
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APPENDIX 1: Wavefunction overlap integral / numerical calculation of the sum  

The wavefunctions in tight-binding are sampled on the atomic sites. Equations (11) and 

(23) involve integrations over the in-plane R perpendicular to the nanowire axis. In the 

calculation the integrals over R are performed by transforming the integrals to 

summations over the atomic sites N. Below we demonstrate how this is performed for the 

calculation of the wavefunction overlaps in the case of phonon scattering. The matrix 

element needs to be squared in the calculation of the scattering rates. What is required is 

integration of the type:  

()
2

, 2

',, 2
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1 1
x x

x x

m n

k km n

k k R

R d R
A A
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and 1/A
2
 originates from wavefunction normalization.   

We convert the integral to a sum by  
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where /A A ND = , and N is the number of atomic sites in the unit cell of the NW. 

Therefore, 
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In the wavefunction normalization, the usual expression in integral or summation form is: 
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Numerically, however, the wavefunctions provided by the eigenvalue solvers are already 

normalized and give: 

     () ()
*

, , 1
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where , ,x xn k n kF NF= . 

The expression in Eq. (A1.3) then becomes: 
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where (),

',x x

m n

k k Rr  is calculated using the actual F expressions given by the eigenvalue 

solver, and: () (), 2 ,

', ',x x x x

m n m n

k k k kR N Rr r= . 
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APPENDIX 2: Bond Passivation (sp
3 
- Hybridization) in tight -binding, following for 

Ref. [36]: 

  The passivation of the bonds that reside outside the domain of the NW, is done 

using a sp
3
 hybridized scheme. The construction of the Hamiltonian assumes sums of 

couplings between atomic basis orbitals (orbital-space). This means that each on-site 

element represents a specific orbital and has contributions from four bonds (couplings). 

In order to passivate a specific bond, a transformation to the hybridized sp
3
 space is 

performed. This means that the transformed matrix reside in the hybridized "bond-space", 

in which all hybridized orbitals are aligned along the four bond directions. The on-side 

element of the hybridized orbital along the dangling bond direction that is to be 

passivated is then raised to a large value (30 eV), in order to be placed away from the 

energies of interest and not to affect the bandstructure calculation. The bonds from an 

anion to the four cations and vice versa, are formed primarily by sp
3
-hybridization as a 

linear combination of only the s and p orbitals. The sp
3
 hybridized orbitals from an anion 

to the cations are: 
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                     (A2.1) 

whereas the sp
3
 hybridized orbitals from a cation to the four anions are: 
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The passivation is then achieved by a transformation as follows: 

          [] 3 3

À

( )E spHybrid sp sp
H V H Vè ø= ê ú ,      (A2.3)           
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where: ( )

s
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E sp
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, is the on-site matrix consisting only of the s and 

p orbitals. Once the transformation takes place, the on-site elements of the hybridized 

space matrix along the bonds to be passivated are raised by (hsp3)i,i=30eV. Finally, a back 

transformation into the orbital space will give the passivated matrix elements: 

 

    [] 3 3 3

À

. HybridPassiv sp sp sp
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ê ú , where    (A2.4) 
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, with ai been 30eV or zero, depending on whether the bond i is 

passivated or not. 
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Figure 1:  
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Figure 1 caption:  

Zincblende lattice of cylindrical nanowires in the [100], [110], and [111] orientations. 
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Figure 2:  
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Figure 2 caption:  

Dispersions of n-type NWs in various orientations and diameters/side lengths. (a) [100], 

D=3nm. (b) [100], D=12nm. (c) [111], D=3nm. (d) [111], D=12nm. (e-f) Dispersions of 

rectangular NWs with widths (W) and heights (H): (e) [110] NW, W=3nm, H=12nm. (f) 

[110] NW, W=12nm, H=3nm. a0, a0ô and a0ôô are the unit cell lengths for the wires in the 

[100], [110], and [111] orientations, respectively. The filled rectangles indicate the NW 

cross section. 
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Figure 3:  

 

Figure 3 caption:  

The thermoelectric power factor versus the 1D carrier concentration under ballistic 

transport conditions for n-type NWs of D=3nm and D=12nm in the [100] (blue), [110] 

(red), and [111] (green) orientations.  
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Figure 4: 
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Figure 4 caption:  

Thermoelectric features for n-type [100] (left column) and [110] (right column) NWs 

versus the 1D carrier concentration under ballistic transport conditions. (a, c) [100] NWs. 

Red lines: NWs with cross section sizes W=3nm to 12nm, while H=3nm fixed (wide and 

thin NWs, approaching a thin-body). Blue lines: square NWs with cross section sizes 

W=H=3nm to W=H=12nm. Increments in sizes are of 1nm. (a) Power factor ůS
2
. (c) ZT 

figure of merit. (b, d) [110] NWs. Red lines: NWs with cross section sizes W=3nm fixed, 

and H=3nm to 12nm (thin and tall NWs, approaching a thin-body device). Blue lines: 

NWs with cross section sizes W=3nm to 12nm and H=3nm fixed (thin and wide NWs, 

approaching a thin-body). Increments in sizes are of 1nm. (b) Power factor ůS
2
. (d) The 

ZT figure of merit. The filled rectangles indicate the NW cross section. əl=2W/mK is 

used for the thermal conductivity. 
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Figure 5: 
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Figure 5 caption:  

The effect of gate field electrostatic potential on the electronic structure and the ballistic 

ZT figure of merit of the n-type [111] D=12nm NW. (a) The bandstructure for a flat 

potential profile. (b) The bandstructure under strong inversion, for VG-VT=1.0V. (c) The 

ZT figure of merit for the NW versus carrier concentration under no bias, and under large 

gate bias cases.  
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Figure 6:  
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Figure 6 caption:  

Dispersions of the [110] NW of D=3nm with the scattering mechanisms indicated. (a) n-

type NW. Intra-valley elastic and inter-valley inelastic (IVS) processes are considered 

(between the three valleys), following the bulk silicon scattering selection rules. For NWs 

in different orientations the ũ and off-ũ valley degeneracies, and the bulk valleys from 

where they originate are shown in the table. Following the bulk scattering selection rules, 

however, each of the valleys is considered independently. (b) p-type NW. Elastic and 

inelastic processes are considered within the entire bandstructure. Intra- and inter-valley 

scattering is considered.  
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Figure 7:  
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Figure 7 caption:  

The wavefunction overlap integral between a state at k=0 in the first subband with (a) 

states of different k in the first subband, and (b) with states at k=0 but different subbands 

in units of 1/A, where A is the area of the NW. Results for n-type [100] and [110] NWs 

of D=6nm are shown. The analytical value for the integral is 9/4 for intra-band 

transitions, and 1 for inter-band transitions. Insets: Schematics indicating the initial and 

final E(k) states (the dispersions are of the D=3nm, [110] n-type NW, for which the 

transitions can be more easily visualized).    
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Figure 8:  

(a) (b)

(c) (d)

 

Figure 8 caption:  

Change in band edges as a function of diameter. Results for NWs in the [100] (diamond-

blue), [110] (cross-red), and [111] (square-green) transport orientations are shown. (a) 

Conduction band. Results for the lower valleys (solid), and upper valleys (dashed) are 

shown. (b) Valence band. The dashed-black line indicates the D
-3
 law. (c-d) The average 

confinement effective mass for NWs in different orientations versus the diameter. This is 

calculated from the change in the subband edges with confinement using the particle in a 

box quantization picture. Results for [100] (diamond-blue), [110] (triangle-red) and [111] 

(square-green) transport orientated NWs are shown. (c) n-type NWs. (d) p-type NWs.   


