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Abstract 

 

We assess the impact of the scattering physics assumptions on the thermoelectric 

properties of five Co-based p-type half-Heusler alloys by considering full energy-dependent 

scattering times, versus the commonly employed constant scattering time. For this, we employ 

DFT bandstructures and a full numerical scheme that uses Fermi’s Golden Rule to extract the 

momentum relaxation times of each state at every energy, momentum, and band. We consider 

electron-phonon scattering (acoustic and optical), as well as ionized impurity scattering, and 

evaluate the qualitative and quantitative differences in the power factors of the materials 

compared to the case where the constant scattering time is employed. We show that the 

thermoelectric power factors extracted from the two different methods differ in terms of: i) 

their ranking between materials, ii) the carrier density where the peak power factor appears, 

and iii) their trends with temperature. We further show that the constant relaxation time 

approximation smoothens out the richness in the bandstructure features, thus limiting the 

possibilities of exploring this richness for material design and optimization. These details are 

more properly captured under full energy/momentum-dependent scattering time 

considerations. Finally, by mapping the conductivities extracted within the two schemes, we 

provide appropriate density-dependent constant relaxation times that could be employed as a 

fast first–order approximation for extracting charge transport properties in the half-Heuslers 

we consider.  
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1. Introduction  

Thermoelectric generators (TEG) convert heat flow into useful electrical power and 

could provide energy savings and reduced dependence on fossil fuels. TEG are based on 

thermoelectric (TE) materials, whose ability to convert heat into electricity is quantified by 

the dimensionless figure of merit ZT = σS2T/κ, where σ is the electrical conductivity, S is the 

Seebeck coefficient, and κ is the thermal conductivity. Some of the best bulk TE materials 

have ZT ~ 1, which is, however, insufficient for large scale implementation. It is estimated 

that a ZT > 3 based on inexpensive, non-toxic, and abundant materials will increase the 

applications for thermoelectricity by 10-fold and will empower large scale 

commercialization.1 At present, the efforts to increase ZT mostly focus on the reduction of the 

lattice thermal conductivity by acting on the granular structure of the samples, a strategy that 

resulted in ZT values above 2,1-4 but strategies to increase the power factor σS2 (PF) can be 

beneficial as well.5  

New classes of materials started to emerge in the last several years, which could bring 

large improvements in the PF.  Half-Heusler alloys, SnSe, PbTe, and BiTe based compounds, 

clathrates, skutterudites, to name a few, have complex electronic bandstructures with multiple 

anisotropic bands in multiple valleys placed close to the conduction and valence band edges, 

which are thought to be beneficial to the PF.4, 6 Half-Heuslers alloys, in particular, combine 

thermal and mechanical stability, low toxicity, reasonable price, and good TE performance in 

terms of high power factors.7-10  

Theoretical studies to assess the performance of such materials are usually based on 

extracting the bandstructure using density-functional-theory (DFT), and then calculate the TE 

coefficients within the semi-classical Boltzmann Transport Equation (BTE).11  However, due 

to the complexity of the bandstructures and scattering physics, the constant relaxation time 

approximation is usually employed within the BTE. Well-established publicly available 

software are also available towards this effort, each having different capabilities and strengths, 

namely BoltzTraP,12 BoltzWann,13 aMoBT14 and LanTraP.15 In reality, however, the 

scattering rates are energy, momentum, and band dependent, and multiple scattering 

mechanisms such as electron-phonon scattering, ionized impurity scattering, alloy scattering, 

boundary scattering, are contributing to the scattering times, each having a distinct 

energy/momentum dependence (elastic or inelastic, isotropic or anisotropic).16, 17 In the light 

of numerous studies undertaken recently towards large data materials screening and ranking, 

not only for TE materials, but for other applications as well,2, 3 it is imperative that some of 
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these details are considered to extract the electronic properties, or at least the consequences of 

omitting them, understood and quantified.18  

In this work, we relax the constant relaxation time approximation with a code that can 

consider the full energy, momentum, and band dependence of the scattering rates, considering 

carrier scattering with phonons and ionized impurities. We study five p-type Co-based half-

Heusler alloys, whose complex valence bands7, 19  make them an excellent tool to assess the 

impact of the scattering physics in the transport properties of complex materials: TiCoSb, 

ZrCoSb, HfCoSb, ZrCoBi and NbCoSn. (Note that in the present context, ‘complex’ is 

commonly used to refer to the rich features, far away the simple parabolic shapes, with no 

reference to ‘imaginary’ components). We consider a full 3D bandstructure as extracted from 

DFT and scattering rates due to acoustic and optical phonons, as well as ionized impurity 

scattering, extending our previous 2D and 1D implementations in other mateirals.20-23 We 

demonstrate that different qualitative findings are reached, with regards to materials PF 

rankings, optimal carrier density and temperature trends, when comparing energy/momentum 

dependent versus constant scattering times. The paper is organized as follows: in Section 2 

we describe the theoretical and computational methodology; in Section 3 we present and 

discuss our results in terms of the impact of the scattering physics on the charge transport 

properties of the Heusler materials and their power factor, and finally, in Section 4 we 

conclude. 

 

2. Approach  

The approach consists of three stages: i) calculation of the bandstructures using DFT, 

ii) numerical extraction of the scattering rates, and iii) use of the BTE for the calculation of 

the TE coefficients. The electronic bands are calculated within the DFT scheme using the 

Quantum Espresso package.18, 24, 25 Projector augmented wave technique was used with the 

PBE-GGA functional and a kinetic energy cut-off greater than 60 Ry was used for the wave 

functions. An energy convergence criterion of 10-8 Ry for self-consistency was adopted 

throughout our calculations. The 3D bandstructure was calculated using a 51x51x51 

Monkhorst–Pack k-point mesh on the primitive unit cell of the reciprocal lattice. The k-points 

coordinates, originally described in the coordinate system of the reciprocal unit cell, are 

expressed in orthogonal coordinates to work in a cartesian system and we then calculate the 

transport quantities as x,y,z tensors. 
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The bandstructures for the five half-Heuslers under consideration are shown in Fig. 1. 

There, we only show the 1 eV energy range into the valence band (VB) and the conduction 

band (CB) edges, which participate in transport (we only consider hole transport in this work). 

Multiple bands of different curvatures in different directions compose the bandstructure and 

participate in transport. Figure 1f shows an example of the iso-surfaces in 3D at E = -0.1 eV 

to illustrate the complexity of the bands in 3D. In the transport calculations we consider the 

lower VB energies up to -0.7 eV below the valence band edge as indicated by the shaded 

regions, that is around 7kBT beyond the highest Fermi level for the T = 900 K, which is the 

maximum temperature we use. Figure 1g shows the primitive cell of the TiCoSb as an 

example, while the conventional zincblende unit cell is shown in Fig. 1h. These half-Heusler 

materials are in fact compounds (the term alloy endures for historical reasons).  

As an illustration of the numerical complexity of the computation, in Fig. 2a we show 

an iso-energy surface for TiCoSb at E = -0.12 eV into the valence band. The surface has 

elongated tubes and flat regions, an anisotropy that is thought to be very beneficial for the 

Seebeck coefficient.3, 6 For the numerical calculation of the scattering rates and the transport 

state properties needed in the BTE (velocities and density-of-states (DOS)), first we transform 

information with respect to the E(k), obtained from DFT,  into k(E). Thus, for every energy 

we gather the information of all k-states with their velocities and their DOS.20-22 We show the 

sampling of the same iso-energy surface in Fig. 2b. The surface contains tens of thousands of 

points, to each of them a velocity vector and density-of-states is assigned. Each k-point is 

considered as an initial state k for the carrier that can scatter in all final states k’. As the 

selection rules and details of the strength of the electron-phonon coupling of each initial state 

to all other states individually is not yet well established for half-Heulser alloys in general, in 

this work we consider both intra-valley and inter-valley scattering events (using deformation 

potential theory). The final states can reside on the same surface in the case of intra-band 

scattering, or on the surface of different bands in the case of inter-band scattering, as sketched 

in Fig. 2b, and 2c (orange dots indicate states from a different band compared to the initial 

one), respectively. In the case of inelastic scattering, the initial states are scattered into states 

with final energies Ei ± ℏ (red/green dots in Fig. 2d).  

In addition, for each possible pair (k, k’) we have a scattering rate for each relevant 

scattering mechanism. Thus, we separately include all energetics from the contributions of 

different scattering mechanisms, especially ionized impurities that play a major role at the 

high doping concentration of common TE materials. Yet, for the extraction of the scattering 

rates, we require deformation potentials, sound velocities, phonon energies, and dielectric 
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constants, parameters that are still not well established for Heuslers or most of the new 

generation advanced TE materials. We adopt these parameters from the literature26 and the 

Materials Project database.27 Table I reports the used parameters and their values.  

We consider elastic scattering with acoustic phonons (ADP), both intra- and inter-band, 

inelastic scattering with optical phonons (ODP), being both intra- and inter-band, and 

scattering with ionized impurities (IIS), considered as only intra-band. The polar optical 

phonon (POP) scattering is a relevant scattering mechanism in compound semiconductors, 

and is mainly active for carriers residing in valleys centred around  28 However, due to the 

lack of the necessary relevant parameters in the literature and the lack of knowledge about the 

selection rules for these compounds, we do not consider POP here. This could overestimate 

our conductivity calculations at some degree, however, we do not expect any qualitative 

changes. The overall momentum relaxation time for each scattering mechanism (i) of a carrier 

in a state (k,𝑛,E)  is derived from the scattering rate between the considered state and all the 

possible final states as defined by intra- and inter-band considerations, energy and momentum 

conservation, by: 

1

𝜏𝑥,𝒌,𝑛,𝐸
(𝑖)

=
1

(2𝜋)3
∑ |𝑆𝒌,𝒌′

(𝑖)| (1 −
𝑣
𝑥,𝒌′

𝑣𝑥,𝒌,𝑛,𝐸
)𝒌′                                         (1) 

The sum in Eq. (1) runs on all the possible final states k’ and |Sk,k’| is the transition 

rate. The (1 −
𝑣
𝒌′

𝑣𝒌
) term is an approximation for momentum relaxation, but uses the state 

velocities instead of the momenta, which is a generalization of the case where multiple bands 

with multiple effective masses at different regions of the Brillouin zone participate in 

transport.21, 22, 29, 30 Since these half-Heuslers are non-ferromagnetic the carriers only scatter 

in states of the same spin as in common semiconductors. 28, 31  

|Sk,k’| is derived from the Fermi’s Golden Rule for different scattering mechanisms, 

(acoustic deformation potential, optical deformation potential, and ionized impurity 

scattering), in the usual way, as:30, 31  

|𝑆𝒌,𝒌′
(ADP)|= 

1

𝑉c

𝜋

ℏ
𝐷ADP

2 𝑘𝐵𝑇

𝜌𝑣S
2  𝛿(𝐸𝒌′ − 𝐸𝒌)                                                 (2a) 

|𝑆𝒌,𝒌′
(ODP)| = 

1

𝑉c

𝜋𝐷ODP
2

2𝜌𝜔
(𝑁ω,BE +

1

2
±

1

2
)  𝛿(𝐸𝒌′ − 𝐸𝒌 ± ℏ𝜔)                               (2b) 

|𝑆𝒌,𝒌′
(IIS)| = 

1

𝑉c

2𝜋

ℏ

𝑍2𝑞0
4

𝑘𝑠
2𝜀0

2

𝑁imp

(|𝒌−𝒌′|𝟐+
1

𝐿D
2 )

2   𝛿(𝐸𝒌′ − 𝐸𝒌).                                       (2c) 
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Above, VC is the crystal volume, DADP is the acoustic deformation potential, is the 

mass density, vs is the sound velocity computed as 𝑣s =
1

3
𝑠𝑙 +

2

3
𝑠𝑡, which is important when 

the bands are not isotropic,16 where 𝑠𝑙 = √
𝐾V+4

3⁄ 𝐺V

𝜌
 and 𝑠𝑡 = √

𝐺V

𝜌
 are the longitudinal and 

transverse sound speeds and KV and GV are the bulk and shear modulus. DODP is the optical 

deformation potential,  is the longitudinal optical phonon frequency in the single mode 

approximation with constant frequency over the entire reciprocal lattice unit cell and N is 

its population density given by the Bose-Einstein statistics where the ‘+’ and ‘–’ signs indicate 

the absorption and emission processes, respectively. Nimp is the impurity density, Z the 

impurity charge, 0 and ks are the vacuum and the static relative permittivities. LD the Debye 

screening length in 3D defined as:    

                                                                   𝐿D = √
𝑘s𝜀0

𝑞0

𝜕𝐸F

𝜕𝓃
                                                   (3)  

where 𝓃 is the carrier density and 𝜕𝓃/𝜕𝐸F is the variation of the carrier density with respect 

to the Fermi level, which is temperature and doping dependent.30, 31 The explicit use of 

𝜕𝓃/𝜕𝐸F enables us to apply the equation also in the degenerate doping conditions. In the 

calculations, the doping concentration is assumed to be equal to the carrier density at a specific 

Fermi level position, which is an input to the code, as calculated at 300 K. We consider the 

Fermi level movement upon temperature by allowing it to shift in order to ensure keep 

constant carrier density. The wavefunctions overlap integral is approximated to the unity. 

 In Eq. (2) the delta function ensures the energy conservation while the momentum 

conservation is assured by the phonon or crystal momentum. The delta functions define a 

constant energy surface and the evaluation of the scattering rate, Eq. (1), becomes numerically 

a surface integral.32, 33 Computationally, the sum in Eq. (1) runs over the points of the constant 

energy surface. In this way a density of states for each individual final k’-state  is computed 

as  𝑔𝒌′,𝑛,𝐸 =
𝑑𝐴𝒌′,𝒏,𝐸

ℏ|𝑣𝒌′,𝑛,𝐸⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  |
, where 𝑑𝐴𝒌′,𝑛,𝐸  is the corresponding surface element (on the iso-

energy surface at energy E of band 𝑛) associated to each k’-state and 𝑣  its band velocity.20, 33 

Using the regular discretization of the reciprocal unit cell that the DFT bandstructure is 

computed on, we extract the constant energy surfaces as a set of points in the k-space for 

which the individual gk,n,E is essentially replacing the delta function and the crystal volume 

terms. Details for the extraction of 𝑑𝐴𝒌,𝑛,𝐸 are presented in the supplementary material. The 

deformation potentials are taken from the literature, where they have been computed from the 
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electron-phonon matrix interaction within the EPW code.26 Since these materials are 

compounds, no alloy scattering is considered.  

Within the linearized BTE formalism, the charge transport TE coefficients are defined 

as:20-22   

𝜎 = 𝑞0
2 ∫ 𝛯(𝐸) (−

𝜕𝑓0

𝜕𝐸
)

𝐸
𝑑𝐸,                                                (4a) 

  𝑆 =
𝑞0𝑘𝐵

𝜎
∫ 𝛯(𝐸) (−

𝜕𝑓0

𝜕𝐸
)

𝐸−𝐸𝐹

𝑘B𝑇𝐸
𝑑𝐸,                                              (4b)                         

where EF, T, q0, kB, are the Fermi level, the absolute temperature, the electronic charge and 

the Boltzmann constant respectively, f0 is the equilibrium Fermi distribution. 𝛯(𝐸) is the so-

called transport distribution function defined as:13 

𝛯(𝐸) =
2

(2𝜋)3
1

𝑉𝑐
∑ 𝑣𝒌,𝑛,𝐸

2𝐵𝑍
𝒌,𝑛 𝜏𝒌,𝑛,𝐸  𝛿(𝐸

𝒌
− 𝐸) =

2

(2𝜋)3
∑ 𝑣𝒌,𝑛,𝐸

2𝔏𝐸
𝑛

𝒌,𝑛 𝜏𝒌,𝑛,𝐸𝑔𝒌,𝑛,𝐸   (5) 

where vk,n,E is the band velocity of the charge carrier in the state defined by the wavevector k 

in the band n at energy E, k,n,E its relaxation time (as defined in Eq. (1)) and gk,n,E  its density-

of-states (DOS) associated with the individual states, BZ stands for the Brillouin Zone and 

𝔏𝐸
𝑛 represents the surface of constant energy E for the band of index 𝑛.21-23  The first sum in 

Eq. (5) runs over all the k-states and the bands of the BZ. The delta-function which picks up 

only the states at energy E, defines a surface of energy E for each band. The second sum in 

Eq. (5) runs on all the points of these surfaces, for all bands, and returns an energy dependent 

quantity evaluated on all the iso-energy surfaces 𝔏𝐸
𝑛. The triad (k,𝑛,E) defines uniquely each 

transport state that, as above, has DOS 𝑔𝒌,𝑛,𝐸 =
𝑑𝐴𝒌,𝒏,𝐸

ℏ|𝑣𝒌,𝑛,𝐸⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗|
, where 𝑑𝐴𝒌,𝐸,𝑛 is the surface area 

element associated to each k state in the band n at energy E.20, 33 Each individual (k,𝑛,E)  state 

has its own specific 𝜏𝒌,𝑛,𝐸 that is composed from the scattering time of each mechanism (Eq. 

(1)), all combined together using Matthiessen’s rule.  

The surface element 𝑑𝐴𝒌,𝐸,𝑛 is in general complicated to be extracted for each state on 

a surface of an arbitrary shape. In general, this can be achieved by Delaunay Triangulation of 

the energy surfaces, which, however, we found computationally expensive, given that the 

energy surfaces in these materials extend in the entire Brillouin zone. However, once we have 

the k-points that reside on a constant energy surface, we find that the area of the circle having 

radius equal to half the average distance between the specific (k,𝑛,E)  point and its nearest 

neighbours on the iso-energy surface, is a very good approximation for its surface element. 

For this, the nearest neighbours are defined as the nearby points within √2·dk where dk is the 
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average distance between neighbour points in the initial input regular k-mesh from DFT. We 

have validated this approach versus parabolic and non-parabolic band cases that have 

analytical forms for the DOS with excellent agreement, as well as for a Heusler material in 

comparison to the full Delaunay triangulation method. The method and its validation are 

detailed in the supplementary material. The scattering treatment (Eq. 2-4) has also been 

validated for the case of silicon. 

 

 

3. Results and Discussion 

We start our investigation by comparing the PF of the five materials under 

consideration under three different scattering scenarios at 300 K. Figure 3 shows the power 

factor (PF) of the five Heuslers versus the relative position of the Fermi level F, that 

essentially corresponds to the density or doping level, for the cases of: i) constant relaxation 

time approximation, τc, ii) energy dependent phonon-limited scattering, τph(E), and iii) energy 

dependent phonon plus ionized impurity scattering, τph,IIS(E). When we consider the scattering 

processes we deal with a state dependent relaxation time (k,𝑛,E), as in Eq. (5), but for 

simplicity below we use the notation (E). Note that the valence band edge is set to zero and 

a negative F means that the Fermi level is pushed into the bands – i.e. degenerate conditions. 

In all sub-figures orange lines are for HfCoSb, blue for TiCoSb, purple for ZrCoSb, red for 

NbCoSn, and black for ZrCoBi. In the constant relaxation time approximation (Fig. 3a) we 

arbitrarily chose τc = 10 fs as it’s a typical used value in the thermoelectric literature. This 

value is commonly employed for computational studies related to thermoelectric materials.34 

It is in the neighbourhood of values estimated in experimental settings (usually for 

polycrystalline, non-defect free materials). It arises from the general lack of data about single 

crystal mobility in half-Heusler alloys, across temperatures, and across doping values. It is 

understood that more refined values could be used to match more sophisticated calculations, 

but any other number will only have a quantitative effect on our results. In this work, however, 

we are focusing on the qualitative trends that the energy dependence of scattering times brings, 

thus, we still employ the common to the thermoelectric literature τc = 10 fs.   

This choice does not qualitatively affect the following discussion and materials 

ranking considerations. Under a constant relaxation time approximation, TiCoSb, NbCoSn 

and HfCoSb have the best performance while ZrCoSb has the worst performance. 
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We compare this scenario with the case of phonon-limited scattering (Fig. 3b), and 

then in the case of phonons plus impurity scattering limited PFs (Fig. 3c). We will not be 

considering any quantitative differences, as those will depend on the arbitrary chosen constant 

relaxation time, however, two important qualitative differences can be noted: 

 (i) The materials ranking can be different in the three scenarios. Under the constant relaxation 

time approximation c, TiCoSb, NbCoSn and HfCoSb have a similar performance, topping 

the PF values. In the energy dependent scattering cases, still NbCoSn and secondly ZrCoBi 

and HfCoSb hold the highest power factors, however the TiCoSb ranking drops to the lowest, 

even though it is one of the best performers in the constant relaxation time case. Moreover, 

ZrCoBi (black line) ranks second to last in the constant relaxation time scenario, while it ranks 

second/third when energy-dependent scattering rates are considered and looks more 

promising. Indeed, recent experimental data indicate that TiCoSb performs less than ZrCoBi 

in terms of both PF and ZT and indicate ZrCoBi as one of the best p-type half-Heusler alloys.35 

(ii) The PF peaks appear when the EF is pushed into the bands at 0.1 eV in the constant 

scattering time case, whereas the peaks shift to lower Fermi energy position (and consequently 

doping levels) at F = 0, in the energy-dependent scattering cases. 

Two experimental points from the literature are shown by the hexagons in Fig. 3c, 

measured at 300 K for ZrCoBi (black hexagon) and ZrCoSn (purple hexagon). To plot these 

points we have extracted the Fermi level position that corresponds to the measured carrier 

concentration.35 The measured data indicate lower PFs since the materials are almost certainly 

polycrystalline with grain boundaries that are additional scattering centres,36-38 whereas our 

simulations are for single crystals. In addition, solid solution effects may rise from heavy 

substitutional doping and affect the comparison, as solid solutions can have different elastic 

deformation potentials and dielectric constants, together with a possible alloy scattering 

contribution, 39 while the calculations consider single crystals cases. Note that the quantitative 

accuracy is also very sensitive to the accuracy of the input parameters (deformation potentials, 

dielectric constants, etc.), the possible role of polar phonons, the microstructure details (grain 

boundaries, nanoinclusions and defects). Despite all these unknowns, however, the agreement, 

for such a complex structure is within a factor of ~ 2 which provides credit to our energy-

dependent computations.  

To provide more indications about the qualitative and quantitative differences that 

appear because of considering different scattering specifics, and to investigate what makes the 

best PF performers, we analyse in detail the charge transport properties of NbCoSn and 
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TiCoSb. The former performs very well in all the scattering scenarios while the order of the 

latter changes significantly in ranking. The electrical conductivity and the Seebeck coefficient 

are plotted versus F at 300 K in Figs. 4a and 4b for the energy dependent scattering time 

τph(E) (solid lines) and for the constant relaxation time τc (dashed lines). With blue lines we 

show TiCoSb whereas with red lines the NbCoSn. Under the constant relaxation time 

approximation, TiCoSb and NbCoSn have very similar conductivity (dashed lines in Fig. 4a), 

but under the energy dependent scattering case the conductivity of NbCoSn is much higher 

than that of TiCoSb. The conductivity differences lead the shift in ranking, since their Seebeck 

coefficients are quite similar as seen on Fig. 4b. 

The better performance of NbCoSn in the (E) case can be explained when we consider 

the shape of the transport distribution function  (E)  in both cases. In the c case, we have at 

first order E v2(E) g(E) , whereas in the (E) case, since at first order the relaxation time 

is proportional to the inverse of the DOS, we have  (E)  v2. Thus, in the former case, the 

DOS has a relevant contribution in determining the  (E) , together with the velocity squared. 

In the (E) case, on the other hand, the  (E) function is at first order determined only by the 

velocity squared, rather than the DOS. In Fig. 4c we compare the DOS of the two materials. 

TiCoSb has a higher DOS in the energy region within 0.2 eV from the band edge, where the 

states that participate in transport are located. Thus, the higher DOS will benefit TiCoSb under 

the c approximation over NbCoSn. The  functions for these cases are show in Fig. 4d. 

In the τc case, due to larger velocities, NbCoSn performs slightly better (dashed red line versus 

dashed-blue line), despite the larger DOS of the TiCoSb. The difference in the velocities, 

however, provides to NbCoSn a much higher transport distribution function  (E) in the 

energy-dependent case (solid lines in Fig. 4d). Note, however, as observed in Table I, that 

NbCoSn has a higher mass density and sound velocity, which result in a lower  ADP scattering 

rate, and together with a higher dielectric constant that enables higher screening, it also 

experiences weaker IIS. Thus, NbCoSn experiences higher velocities, and weaker scattering 

in general as well, which results in an improved transport distribution function, conductivity, 

and power factors under energy/momentum dependent scattering conditions.  

An important issue that is observed in the  (E) in Fig. 4d, on the other hand, is the 

shape of the  (E) functions under c (dashed lines) and ph(E) (solid lines). They differ 

substantially when the energy-dependent scattering time is considered, while they are very 

similar in the constant relaxation time approximation. They are also much smoother in the c 

case, whereas they have much richer features under the ph(E) case. The reason is that under 
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c,  (E)  v2(E)g(E), and since g(E) ~ 1/|v(E)|, the product of the two quantities at first order 

smears out a lot of the bandstructure features of the materials, that would have provided 

significant variations in their performance. On the other hand, when we consider the ph(E), 

we have a relaxation time that at first order is related to 1/ g(E). This results in  (E)  v2, 

which enhances differences in the band details between materials (square vs linear dependence 

on the velocity).  Thus, the important point is that the proper energy-dependent treatment of 

the scattering mechanisms captures the richness of the bandstructures whereas constant 

relaxation time approximation smoothens the differences that those bandstructures have 

induced into the transport properties. We note here that the fact that the Seebeck coefficient, 

S, is also proportional to the energy derivative of the DOS (or the conductivity, and in the 

more general case the  (E)), may further bring richer trends for the power factor, which are 

also smeared out under the constant relaxation time approximation. 

Thus, a scattering time treatment that is sensitive to the charge carrier state specific 

momentum and energy dependent relaxation time is necessary to grasp the details of the 

transport distribution functions and provides different ranking outcomes between materials 

compared to the contestant relaxation time approximation. However, this comes with the 

limitations of the uncertainty in the deformation potentials, but still the energy-dependence by 

itself contains a richer and more complete description. 

Now we analyse the temperature dependence of the PF under the c and (E) scattering 

scenarios. We first study the dependence of the PF on the carrier density at different 

temperatures between 300 K and 900 K. We only report on HfCoSb, which is anyway 

representative of all the five compounds studied. We consider the Fermi level movement upon 

temperature by allowing it to shift down in order to keep the carrier density constant when the 

Fermi distribution broadens. This approach is valid only in the so-called extrinsic region,40 

where the carriers’ density is constant upon temperature. The extension of the extrinsic region 

in the half-Heuslers thermoelectric alloys is not known, but the compounds we investigate 

have a bandgap higher than 1 eV as computed by DFT (and also considering that DFT tends 

to underestimate the band gaps)41-43 thus it seems an acceptable approximation. 

Under the constant relaxation time approximation, the temperature increase leads to a 

monotonic increase in the PF, as shown in Fig. 5a. The increase appears because at the same 

carrier density, the 𝜕𝑓0/𝜕𝐸 function broadens with temperature, which forces the Fermi level 

to shift to lower energies to keep charge neutrality. The shift in the EF increases the Seebeck 

coefficient (at the same carrier density). The PF peak position with density moves slightly, 
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but in all cases, corresponds to a Fermi level positioned ~0.1 eV into the band. However, as 

in practice the phonon scattering rate increases with temperature, at first order one can 

consider a linear decrease of the constant relaxation time for a fairer comparison (as in Eq. 

2a). The inset of Fig. 5a shows the case where the constant relaxation time is linearly scaled 

with the temperature from the 300 K value as 𝜏C(𝑇) = 𝜏C(300)
300

𝑇
. In this case, the curves 

almost collapse on each other, with still a slight decrease in the PF peak as T increases, 

indicating that the increase in the Seebeck coefficient due to the shift in EF is compensated by 

the decrease of  with temperature.  

Similarly, in the electron-phonon scattering scenario, ph(E), Fig. 5b, the reduction in 

conductivity with temperature is compensated with the increase in Seebeck due to the EF shift, 

with still the effect of the temperature decreasing the PF slightly. The main difference, from 

the scaled constant time case above, however, is the largest shift in the PF peak towards higher 

carrier densities. At the PF peak, the Fermi level is placed near the band edge, at ~ 0 eV, in 

much less degenerate conditions compared to the τc case where it is at ~ 0.1 eV into the band. 

The reason behind the different optimal EF positioning, can be understood again from the 

shape of the transport distribution functions in Fig. 5d, which shows the  (E) for the τc 

(dashed line) and the τph(E) (solid line) cases. Qualitatively, the faster raise of the  (E) in the 

τph(E) case near the band edge (E = 0 eV) gives a higher Seebeck coefficient, which shifts the 

EF placement for the optimal PF towards those energies. On the other hand, in the τc case, the 

slower raise of the  (E) function around the band edge signals a lower Seebeck coefficient, 

which sets the EF at energies more into the band to reach the optimal PF (at -0.1 eV). 

Considering the shift in the EF with the broadening of the Fermi distribution as the temperature 

increases, in the case where the Fermi level is placed at 0 eV, the shift is larger, compared to 

the degenerate/metallic case where the EF is placed -0.1 eV into the bands, and thus the optimal 

power factor density shift is larger with temperature in the τph(E) case. This shift in the peak 

PF signals to the different PF trends with temperature that are often encountered in 

experiments, as well. In the relatively lightly-doped semiconductor materials, the PF decreases 

with T (left vertical dashed line in Fig. 5b), whereas at heavily-doped conditions and metals 

(right placed dashed vertical line in Fig. 5b), the PF slightly increases with temperature. 

Similar behaviour is observed when the scattering due to the ionized impurities is 

considered, τph,IIS(E) in Fig. 5c. The behaviour is surprisingly very similar to the τph(E) case, 

but the peak drop is less pronounced while the best doping indications do not change. Overall, 

introducing IIS reduces the PF peak by 2-3 times. Another important observation is the 
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significantly large PFs that the calculations predict even with IIS scattering. This indicates 

that once the materials are optimized, their performance would largely increase.  

The comparison arguments above become clearer when the PFs are plotted versus 

temperature (T) in Fig. 6. We pick two carrier densities to create the plots in Fig. 6, the ones 

shown in Fig. 5b with the vertical-dashed lines (these values are approximated within 20%, 

since the input to our simulator is a regular array for the Fermi level, rather than the density). 

As the temperature is raised, the Fermi level is allowed to shift to keep the carrier density 

constant. At 300 K, it turns out that the position of the Fermi level with respect to the band 

edge is the same for all the materials as well. In Fig. 6a we plot the PF for the constant 

relaxation time approximation calculations for the commonly used 10 fs value and for the case 

where this value is scaled with the temperature, as we did above in the inset of Fig. 5a. In the 

former case, as the temperature increases, the Seebeck coefficient S increases because of the 

Fermi level shift away from the bands and leads to PF increase. In the latter case, when the 

constant relaxation time is linearly scaled with T, following the acoustic phonon scattering 

case, the trend becomes more complex and after a small initial increase, the PF slightly 

decreases because the improvement in S cannot compensate the decrease of c. 

The situation changes when electron-phonon limited scattering is considered, and 

different trends are observed depending on the carrier density. In Fig. 6b we plot the PF versus 

temperature for the two carrier density levels indicated by the dashed lines in Fig. 5b. We 

have chosen these values to reside in the left and right regions of the PF peak (see Fig. 3b and 

3c), since the behaviour changes from one case to the other. Recall that at optimal PF 

conditions, the Fermi level is positioned at the band edge, and the increase in temperature 

shifts the Fermi level away from the band edge to keep the carrier density constant. At the 

lower densities we consider, the Fermi level is in the bandgap to begin with at 300 K. As the 

temperature increases, the Fermi level is shifted even further away, drifting further from the 

optimal conditions, and the PF decreases. On the contrary, when the Fermi level is into the 

bands initially (at 300 K to begin with), raising temperature shifts it closer to the optimal 

situation at the band edge, and the PF increases. Another important feature is that the material 

ranking changes in some cases with temperature and doping level, emphasizing the 

importance of energy/momentum dependent treatment of the scattering. 

These energy-dependent considerations of the energy/momentum/band index of the 

scattering time requires quite demanding calculations. In the calculations we present, each 

data point takes approximately ~ 25 hrs on a single CPU (when the ionized impurities 
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scattering is considered), as well as significant memory requirements, > 15 Gb. Simulations 

for elevated temperatures are even more intensive, as higher temperatures require higher 

energy windows with more and larger iso-energy surfaces. Attempts to extract temperature 

dependent c based on overall carrier scattering with acoustic phonons alone have also been 

proposed, leaving out complexities such as separating elastic/inelastic intra/inter-band 

scattering, in attempt to reduce computational costs.44 However, it could be instructive to 

materials scientists, experimentalists and theorists who perform material screening studies, 

employ such methods, or even to still employ a constant relaxation time approximation 

(constant in energy) as a first order approximation to estimate the power factors of materials. 

On the other hand, one first step towards more detailed scattering is at least to include the 

Fermi level (or density) dependence. 

In Fig. 7, we present effective constant relaxation times for the 5 half-Heusler alloys, 

as a function of carrier density, Fermi level position F in the Figure, at room temperature. 

We consider the two scattering situations when only electron-phonon scattering is considered, 

ph(E) (Fig. 7a), and when the ionized impurity scattering is added as well, ph,IIS(E) (Fig. 7b). 

To extract the relevant scattering times, we compare the electrical conductivity computed 

within the energy/momentum dependent scattering case to the electrical conductivity 

calculated under the constant relaxation time approximation. In the latter case, the 

conductivity is directly proportional to the any chosen relaxation time, so when we divide that 

time out, we are left with an effective constant time that can map to the energy-dependent 

calculation as: 

 𝜏∗ = 𝜎scatt

(𝜎/𝜏C)const⁄                                                          (6) 

where 𝜎scatt is the calculated conductivity including all the carrier energy and momentum 

dependencies, including either electron-phonon scattering or adding the ionized impurity 

scattering, while 𝜎const is the electrical conductivity from the constant relaxation time 

approximation calculation. Thus, if the choice is that of a constant relaxation time 

approximation, that should be doping level (Fermi level) and temperature dependent. In Fig. 

7 the position of the PF peaks is shown by dashed lines, green for the energy dependent 

scattering time (F = 0 eV) and red for the constant time approximation (F = -0.1 eV). 

Indicative room temperature relaxation times from the experimental cases of ZrCoBi and 

ZrCoSb as in Fig. 3c are represented by the star-symbols in Fig. 7. To plot these, we have 

scaled the relaxation times in each sub-figure by the relative difference that the power factors 

had in Fig. 3c. Interestingly, the relaxation times for all materials vary according to the Fermi 
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level position from 10s fs up to 100s fs. The shapes of all lines are similar, which might be 

able to give us sufficient ‘statistics’ to make crude generalizations. We show that different 

constant relaxation times values are appropriate for different carrier densities. At low carrier 

densities (positive F), for example, the suggestion is to employ c around 200 fs or 100 fs 

according to the considered scattering physics (phonons only or phonons and impurities). 

When EF = EC, we suggest relaxation times around 150 fs if consider the carrier scattering 

with phonons or in the range 20 to 40 fs if we aim to include the effect of the ionized dopants. 

This is also where we find that the PF maximum will be encountered. At higher carrier 

densities, the times drop to 50 fs, and in the case where IIS dominates (which is more relevant 

for experiments), the effective* is around 10 to 20 fs. Experimental results also point towards 

a τ* in the 15 to 25 fs range for the experimental doping levels, however, the important point 

that we can observe here, is that the optimal operation is achieved at different Fermi levels 

(closer to the green, rather than the red vertical lines).   

Finally, it is useful to comment about when the use of the constant relaxation time 

approximation is adequate, even if the better estimated values from Fig. 7 are employed. 

About the effect of temperature, we show in Fig. 5 that if the relaxation times are scaled by 

the temperature as c(T) =c(300)×(300/T), one can still employ the constant relaxation time 

approximation, and capture sufficiently qualitatively (with some quantitative features as well) 

the trends with the carrier density. On the other hand, in the case of a material with a specific 

carrier density (as in experimental cases) as depicted in Fig. 6, the temperature behaviour 

trends of the power factor are captured by the constant relaxation time approximation at high 

carrier densities, with the T-scaled rates underestimating the trends and the non-scaled, 

overestimating them – thus the right trend is somewhere between the two limits. At low carrier 

densities, as indicated in Fig. 6b, the energy-dependent scattering times indicate a downward 

trend with T, which is not captured by the constant scattering time - in that case a T-scaled 

rate can be a better choice. Notably one of the best p-type TE half-Heusler alloy, the Ti doped 

NbFeSb, at its optimal doping  (8×1020 cm-3) and crystalline quality (larger grains), exhibits a 

PF that decreases with T,45 in contrast to what the constant relaxation time approximation 

suggests. 

 

4. Conclusions 

Using a fully numerical simulator for the extraction of the scattering rates in complex 

bandstructure materials, we performed a comparison of the thermoelectric power factor of five 
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Co-based half-Heusler alloys in computational cases which take account the 

energy/momentum dependences of the scattering times, versus the commonly employed 

approach of the constant scattering time. We show that the use of constant relaxation scattering 

time smoothens out the richness of the bandstructure complexities, in addition to lumping all 

scattering physics (deformation potentials, electron-phonon interactions, ionized impurity 

scattering, dielectric constants, etc.) into one arbitrary parameter. In this way, it reduces the 

possibility in employing the bandstructure richness as a design tool, whereas this is more 

feasible when all energetics of scattering are considered. As a result, when comparing the 

power factor outcomes, we detect different rankings between the different materials with 

respect to the power factor maximum, different densities at which that power factor peak is 

observed, and different temperature trends. We reckon that these evaluations are however 

sensitive to the accuracy of the inputted deformation potentials. Our analysis emphasizes the 

relevance of considering the details of the scattering physics by means of a full band 

energy/momentum dependence of the carriers’ scattering time when predicting thermoelectric 

material properties and would be helpful especially in the identification of materials 

descriptors for materials screening. 

 

 

Supplementary material: additional information on the computational scheme 

validation is provided in supplemental online materials. 
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Compound DADP [eV] vs [m/s] × 103  [g/cm3] DODP [eV/m] × 1010  [eV] r 

NbCoSn 0.5 5.36 8.43 2.15 0.034 22.66 

ZrCoBi 0.8 3.21 9.83 1.80 0.028 20.37 

TiCoSb 0.5 4.04 7.42 2.20 0.036 19.09 

ZrCoSb 1.0 5.55 7.14 2.05 0.028 17.87 

HfCoSb 0.4 5.64 9.54 1.85 0.028 17.51 

 

Table I: Material parameters used in the present work (extracted from literature). 26, 27  
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Figure 1 

 

 

 

Figure 1 caption:  

Bandstructures of (a) TiCoSb, (b) ZrCoSb, (c) HfCoSb, (d) NbCoSn and (e) ZrCoBi. The red-

shaded areas that extend up to E = -0.7 eV below the valence band edge indicate the energy 

window used for the transport properties computation. (f) Iso-energy surface of one of the 

valence band of ZrCoBi at E = -0.1 eV below valence band edge represented on the reciprocal 

unit cell. The multi-valley nature of the bandstructure is clearly evident. (g) Primitive unit cell 

used for the DFT bandstructure calculations and (h) conventional zincblende unit cell of the 

TiCoSb. The oblique geometry typical of the zincblende is visible. 
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Figure 2 

 

 

Figure 2 caption:  

(a) Warped and highly anisotropic k-space iso-energy surface of one of the three valence 

bands of TiCoSb at E = -0.12 eV below the valence band edge. The surface is formed by 

interconnected elongated ‘tubes’ and occupies the entire reciprocal unit cell. (b) The same iso-

energy surface as in (a), formed by ‘points’ indicating the k-states that form it. Each dot is a 

transport state, from which charge carriers (holes) can scatter into other states under an elastic, 

intra-band scattering event (indicated by the arrows). (c) The same iso-energetic surface as in 

(a) and (b) in blue, and a different iso-surface at the same energy but belonging to another 

valence band, shown in orange. Each state (dot) in the blue iso-energy surface can be an initial 

scattering state and each dot in the orange surface can be a final scattering state during an 

inter-valley elastic scattering event. (d) The same iso-energy surface in blue, together with 

two other iso-energy surfaces (green/red) from another valence band and at different energies. 

Transitions from the blue dots into the green/red dots can be the usual transitions in the case 

of an inelastic inter-band scattering event (i.e. absorption/emission of optical phonons).  
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Figure 3 

 

Figure 3 caption:  

Power Factor PF versus relative position of the Fermi level, F, for three different scattering 

scenarios. F = 0 means that the Fermi level is at the band edge – indicated by the vertical 

dashed lines. Positive F values mean that the Fermi level is into the gap while a negative F 

means the Fermi level is into the valence band.  Results for TiCoSb are shown in blue, for 

HfCoSb in orange, for NbCoSn in red, for ZrCoBi in black, and for ZrCoSb in purple. (a) The 

constant relaxation time approximation (c = 10 fs) case. (b) The energy dependent electron-

phonon scattering case. (c) The ionized impurity scattering is added to electron-phonon 

scattering of (b). Experimental PF values at 300 K reported for ZrCoBi and ZrCoSb  are shown 

by the black and purple hexagons,35 respectively. For those, the F value corresponds to the 

measured carrier density: p = 2.20×1021 cm-3, F = -0.124 eV for ZrCoBi, p = 1.47×1021 cm-3, 

F = -0.098 eV for ZrCoSb, for a stoichiometric Sn doping of 0.15.35  
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Figure 4 

 

 

 

Figure 4 caption: 

(a) Electrical conductivity , (b) Seebeck coefficient S, (c) density-of-states DOS, and (d) 

transport distribution functions  (E) for NbCoSn in red and TiCoSb in blue. Solid lines are 

for the phonon-limited energy-dependent relaxation time calculations (ph(E)), while dashed 

lines are for the constant relaxation time approximation (c).   
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Figure 5 

 

Figure 5 caption: 

Power factor PF for HfCoSb versus carrier concentration (p) plotted at different temperatures 

for different scattering scenarios: (a) the constant relaxation time approximation, (b) the 

energy-dependent electron-phonon scattering ph, (c) the electron-phonon scattering and the 

ionized impurities scattering ph,IIS. The red arrow indicates the direction of increasing 

temperature T from 300 K to 900 K. Inset of (a): the case of constant relaxation time when the 

scattering time is linearly scaled by the temperature. (d) Transport distribution functions  

for the scattering cases (solid line) and the constant scattering time (dashed line) at 300 K. In 

the case with the IIS, the plotted data are for the Fermi level at the band edge, p = 2.3×1020 

cm-3.  
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Figure 6 

 

 

 

Figure 6 caption: 

Power factor PF versus temperature at constant carrier density for two scattering scenarios: 

(a) Constant relaxation time (τc = 10 fs, dashed lines) and with its linear temperature scaling 

versus the temperature (dotted lines). (b) Case for electron-phonon scattering, for two different 

doping concentrations corresponding to non-degenerate and degenerate conditions, indicated 

by the dashed lines in Fig. 5b.  

  



27 

 

Figure 7 

 

 

 

Figure 7 caption: 

Equivalent Fermi level dependent relaxation times extracted from Eq. (6) at 300 K. (a) The 

equivalent constant times computed by considering only phonon scattering. (b) The equivalent 

times computed by considering both phonon and impurity scattering. The green and red 

dashed lines correspond to the peak position of the PF under the energy-dependent relaxation 

time calculations, and the constant relaxation time calculations, respectively (see Fig. 3). The 

stars represent the relaxation time obtained for the experimental cases depicted in the inset of 

Fig. 3c, with black for ZrCoBi and purple for ZrCoSb.  


