
Supplemental material for: 

 

Heat current anticorrelation effects leading to thermal conductivity 

reduction in nanoporous Si 
 

 

I. Wave-packet simulations  

 

Figure 4 in the main text includes heat maps for some of the wave packet simulations 

performed in this work. Figures S1–S3 include all the heat maps for the wave packet 

simulations for the three acoustic modes centered at wave vectors qo = 0.46, 0.93, 1.45, 1.74, 

2.89, 4.05, and 5.21 nm-1. Heat maps are shown for both the 1 nm pore radius, 3.4 nm pore 

neck (left-hand side plots), and the 2 nm pore radius, 1.4 nm pore neck (right-hand side plots). 

To tune the wave packets to 5 K, the amplitudes, 𝒜o, of the packets, in ascending order of qo, 

are [0.004, 0.002, 0.0016, 0.0012, 0.0010, 0.0006,0.0004, 0.00035] for the longitudinal mode 

and [0.006, 0.003, 0.0025, 0.0018, 0.0016, 0.0010 ,0.0006, 0.00055] for the transverse mode. 

The transmission through the first pore (Fig. 4 (l) in the main text) was computed from 

the fraction of kinetic energy in the region before the pore (KEemitted) at a given time before 

reflection, and the kinetic energy in the sane region a short time after reflection (KEreflected), 

such that T = 1 – (KEreflected/KEemitted). Figure S4 shows the normalized KE during the 

simulation time for each mode.  

Also included is a figure (Fig. 5S) of the vibrational density of states computed for 2ps 

time intervals during the course of the simulation for the wavepacket simulation in Fig. 4h, for 

a geometry with 1 nm pores (left-hand plots) and a geometry with 2 nm pores (right-hand 

plots). In this figure we can see an optical mode show up at ~ 15Hz and the acoustic mode 

splitting, all happening before the wave reaches the pore. This is due to the anharmonicity in the 

potential. The aim of this figure is to show that while in Fig. 4h (and others) we observe a split in 

the velocity of the wavepacket happening at the pores, this is most likely due to the wavepacket 

being scattered laterally by the curved pore and not due to mode splitting. It can be seen in 

Fig. 5S, that at ~50 ps, which is when the wave reaches the first pore and a split in velocity is seen 

in Fig. 4h, and after 50 ps, there is no apparent change in the phonon modes as seen in the VDOS. 

 

 

 

 

 



 
Fig. S1: Heatmap of the evolution of the wave packet kinetic energies during the simulation time along the 

width of the nanoporous geometries for multiple values of qo, indicated in each plot, in the longitudinal acoustic 

(LA) mode. (left) Geometries with a 1nm pore radius and 3.4 nm pore neck, which do not exhibit anticorrelated 

heat flux in the Green–Kubo calculations. (right) Geometries with a 2nm pore radius and 1.4 nm pore neck, 

which exhibit the anticorrelation (AC) effect in the Green–Kubo calculations. 



 

 

 
Fig. S2: Same as S1 for the transverse acoustic (TA) mode perpendicular to the cylinder (pore) height 

orientation.  

 



 
Fig. S3: Same as S1 and S2 for the transverse acoustic (TA) mode parallel to the cylinder (pore) height 

orientation. 

 

 



 
Fig. S4: Normalized kinetic energy for the LA mode in the (a) smaller neck geometry, and (d) the larger pore 

geometry; the TA mode perpendicular to the height of the pore in the (b) smaller neck geometry, and (e) the 

larger pore geometry; and the TA mode parallel to the height of the pore in the (c) smaller neck geometry, and 

(f) the larger pore geometry. The mode polarizations are indicated in the insets.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Fig. S5: Vibrational density of states computed for 2ps time intervals during the course of the simulation for the 

wavepacket simulation in Fig. 4h. The left-hand plots correspond to a geometry with 1 nm pores and the right-

hand to a geometry with 2 nm pores. The blue lines show the VDOS for the whole geometry, and the red lines 

show the VDOS for the region between the pores. 

 

 

 

 



II. Details/derivation of analytical particle model 
 

As indicated in the main text, as a gedanken experiment, we consider a simple statistical 

model of a grey population of heat-carrying acoustic phonons that pop in and out of existence 

through collisions with a gas of non-propagating optical phonons. The entire system is at 

thermal equilibrium, and we assume that the acoustic phonons all have the same frequency and 

group velocity, and their generation and annihilation is random and uncorrelated. Once born, 

they travel ballistically for a time 𝜏𝑜 (drawn randomly from a Poisson distribution of waiting 

times with mean lifetime 𝜏�̅�) until they are annihilated by scattering into the optical bath. Each 

phonon contributes a stepwise heat current, 𝐽p(𝑡) to the total instantaneous heat current given 

by:  

                                       𝐽𝑝(𝑡) =
𝜔ℏ𝑣𝑔

𝑉
𝐵𝑝(𝑡 − 𝑡𝑝, 𝜏𝑝)Ω̂𝑝 ,             (2) 

where Ω̂𝑝 is the phonon’s direction of travel, and 𝐵𝑝(𝑡 − 𝑡𝑝, 𝜏𝑝) is a (discrete) step wise 

function describing a phonons creation (at time 𝑡𝑝), its annihilation (at interval 𝜏𝑝 later), and 

any scattering event (as exemplified by the dashed blue line in the top panel of  Fig. S1(a)). In 

Eqn. 2 the terms 𝜔 and 𝑣𝑔 are the phonons’ angular frequency and group velocity respectively. 

Given the expression (Eqn. 2) for the heat flux of a single phonon, the instantaneous heat 

current of the entire system is the superposition of 𝐽p(𝑡) from all phonons, so that,  

 𝐽(𝑡) =
𝜔ℏ𝑣𝑔

𝑉
∑ 𝐵𝑝(𝑡 − 𝑡𝑝, 𝜏𝑝)Ω̂𝑝.𝑁

𝑝=1                  (4) 

The autocorrelation of the heat flux is then the sum of each phonon’s cross-correlation with 

every other phonon (including itself). As the birth and annihilation of a phonon is assumed to 

be independent of the other phonons the cross-correlation terms will cancel when averaged 

over sufficient time leaving the autocorrelation function of the total heat current as the weighted 

average of each phonon’s correlation function with itself: 

〈𝐽(𝑡)𝐽(𝑡 + 𝜏)〉 =
1

3

�̅�𝑉𝑉

�̅�𝑜
(
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𝑉
)

2

〈𝐴𝑝(𝜏)〉,    (5) 

where 𝐴𝑝(𝜏) is the non-normalized and non-averaged autocorrelation of the step function 

𝐵𝑝(𝑡, 𝜏𝑜) for a phonon with lifetime 𝜏𝑜, so that: 

𝐴𝑝(𝜏) = ∫ 𝐵𝑝(𝑡′, 𝜏𝑜)𝐵𝑝(𝑡′ + 𝜏, 𝜏𝑜) d𝑡′∞

0
. 



For phonons that are not scattered during their lifetime (as depicted by the dashed blue line in 

Fig. S1(a)) this is the ramp function (dashed green line in Fig. S1(a) with its integral plotted in 

red) given by:  

𝐴𝑝(𝜏) =  {
𝜏𝑜 − 𝜏 𝑓𝑜𝑟 0 ≤ 𝜏 ≤ 𝜏𝑜

0                  otherwise
.       (6) 

In Eq.5 the averaging, 〈… 〉, is performed over all phonon lifetimes with the probability of a 

phonon having lifetime 𝜏𝑜 given by the Poisson distribution of waiting times  𝑃(𝜏𝑜) =
1
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−
𝜏𝑜
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, 

where 𝜏�̅� is the mean phonon lifetime, and thus the integrated HCACF is: 

∫ 〈𝐴𝑝(𝜏′)〉𝑑𝜏′ = ∫ ∫
1
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∞

0
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2∞

0
.   (7) 

Each phonon’s contribution to heat transport is proportional to the square of its lifetime, 

so most of the heat is carried by a minority of long-lived phonons in the tail of the Poisson 

distribution of lifetimes. As a result, the integral of 〈𝐴𝑝(𝜏)〉 converges over a correlation time 

much longer than the average phonon lifetime, consistent with the long correlation times seen 

in MD. 

To explore the effect of specular (perfectly correlated) scattering on the HCACF, we 

imagine that each acoustic phonon experiences some scattering at a time 𝛼𝜏𝑜 during its flight 

that reflects the phonon, reversing its direction, and causing the doubly stepped flux plotted 

with the solid blue line in Fig. S1(a). The HCACF of these reflected phonons is a three-segment 

linear piecewise function which can be shown to have the equation: 

𝐴p(𝜏) = {

(𝜏𝑜 − 3𝜏)              for     𝜏 ≤ 𝜏𝑜min(𝛼, 1 − 𝛼),                                     

𝜏𝑜|2𝛼 − 1| − 𝜏    for     𝜏𝑜min(𝛼, 1 − 𝛼) < 𝜏 ≤ 𝜏𝑜max(𝛼, 1 − 𝛼) 
(𝜏 − 𝜏𝑜)                for     𝜏𝑜max(𝛼, 1 − 𝛼) < 𝜏 ≤ 𝜏𝑜 ,                           
0                             otherwise.                                                                    

.  (8) 

(See solid green line in Fig. S1(a) with its integral plotted in red.) Averaging over a Poisson 

distribution of lifetimes, and also the distribution of scattering times, gives: 

∫ 〈𝐴𝑝(𝜏′)〉𝑑𝜏′ = ∫ ∫ ∫ 𝑃𝛼
1
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where 𝑃𝛼 is the probability distribution that a phonon is reflected at fraction 𝛼 of the way 

through its flight. From Eqns. (9) and (7), it follows that the total thermal conductivity 

reduction due to correlated scattering is: 

𝜅𝑥

𝜅𝑜
= ∫ 𝑃𝛼  (1 − 2𝛼)2𝑑𝛼

1

0
,     (10) 



where, as mentioned in the main text, 𝑃𝛼 is the probability distribution that a phonon is reflected 

at fraction 𝛼 of the way through its flight. 

 

III. Thermal conductivity results  
 

It is remarked in the main text that the ratio between the neck and pore diameter is a 

better metric of the total thermal conductivity than either the neck or pore diameter alone. This 

has been seen in MC simulations as well, and is clearly shown here in Fig. S6 for the same 

simulations as in Fig. 2 of the main text. In Fig. S7, corresponding to the same set of simulations 

as S6, it is shown that negative HCACF values are obtained for geometries with necks upwards 

of 5 nm.  

 

 
Fig. S6: (left) Fractional thermal conductivity (κporous/κpristine) as function of D/n, where D is the pore 

diameter (i.e., D = 2r), obtained for porous structures using MD simulations. The dashed lines are color-

coded according to the size of geometry as shown on the right. (right) Range of geometries simulated. 

The geometries in blue correspond to a 5.43 nm width and pores with diameters ranging between 2 and 

4.8 nm, the red geometries to a 7.6 nm width and pores with diameters ranging between 3.0 and 6.8 nm, 

the green geometries to a 10.9 nm width and pores with diameters ranging between 4.9 and 9.7 nm, and 

the cyan geometries to a geometry with a 13 nm width and pores with diameters ranging between 7.2 

and 11.9 nm. The simulation length is 54.3 nm for all systems.   



 
Fig. S7: ‘Height’ of the HCACF dip as a function of the neck size color coded in the same way as Fig. 

S6.  
 
 

IV. Other origin considerations for the HCACF AC effect 
 

We find the interpretation that the emergent HCACF dip is a result of specular scattering 

between the larger pores and smaller necks to be consistent with the results of the wave-packet 

simulations. Nevertheless, we have considered the possibility that the same (HCACF) behavior 

could be explained by other mechanisms. For instance, amorphicity near the pores could yield 

a ‘fluid-like’ atomic oscillation leading to a negative value in the HCACF. Similarly, a 

softening of the region between the atoms as they get closer together could result in the regions 

between the pores being able to ‘sway’, which could lead to a similar behavior in the HCACF. 

Two geometries, with (right) and without (left) a dip in the HCACF, are shown in Fig. S7 at 

300 K, indicating that the crystal structure is preserved. This is further supported by the radial 

distribution analysis in the region between the pores in the course of the simulation. A visual 

analysis of the stress distribution in the system does also not show any evidence of a softening 

of the regions between the pores for the same geometries as in S7. Moreover, we would expect 

that if the negative section of the HCACF was due to oscillations in the regions of the system 

that are separated by the pores due to softening in the neck region, as in the cartoon picture 

below, that the negative correlation would have been observed in the y- and z-directions as 

well, which is not the case.  



 

 
Fig. S7: Coordination analysis around the pore for geometries with (right) and without (left) a dip in 

the HCACF, at 300 K. Only the region right around the pores has a different coordination than the rest 

of the geometry. The colors indicate the coordination, with red showing a coordination number of 4, as 

expected for Si 

 


